Index | Thread | Search

From:
Theo Buehler <tb@theobuehler.org>
Subject:
Re: numpy 1.24.1 -> 1.25.2
To:
Daniel Dickman <didickman@gmail.com>, ports@openbsd.org
Date:
Sat, 6 Jan 2024 20:40:00 +0100

Download raw body.

Thread
  • Jeremie Courreges-Anglas:

    numpy 1.24.1 -> 1.25.2

  • On Sat, Jan 06, 2024 at 06:41:03PM +0000, Stuart Henderson wrote:
    > On 2024/01/06 11:17, Daniel Dickman wrote:
    > > 
    > > 
    > > > On Jan 5, 2024, at 11:40 AM, Stuart Henderson <stu@spacehopper.org> wrote:
    > > > 
    > > > On 2024/01/02 12:08, Stuart Henderson wrote:
    > > >>> On 2024/01/01 15:23, Daniel Dickman wrote:
    > > >>> The next version of matplotlib requires numpy 1.25 or newer.
    > > >>> 
    > > >>> The below diff updates numpy to 1.25.2 so matplotlib can be updated.
    > > >> ...
    > > >>> p.s. Testing on !amd64 is always useful as there has been 
    > > >>> platform-specific breakage in the past. Bulk tests would also be helpful 
    > > >>> given how much of the tree depends on numpy.
    > > >> 
    > > >> Reading over it LGTM, I will run tests on i386.
    > > > 
    > > > Lots of faffing to get numpy to build at all on i386 thanks to the
    > > > "exists" check for ld.lld from llvm/13 (used by lang/gcc), but got there
    > > > in the end, tests looking pretty reasonable:
    > > 
    > > 
    > > Thanks a lot for testing! I wasn’t sure if you also did a bulk and ran into problems in any consumers?
    > 
    > I did, and no prblems related to numpy.
    > 
    > > I actually think that given how much breakage this update could cause I don’t think I’m going to be brave enough to commit it. It should probably go through bulks on all platforms that folks care about to identify any platform-specific issues ahead of being committed.
    > 
    > Bulks on that mamy platforms aren't not going to happen before commit
    > and I don't think need to be done amyway. I'm basically ok with this
    > thpugh given what you've said It would be nice to have build and "make
    > test" of numpy itself on another arch or two (sparc64 would be a good
    > one if anyone has time to do that).
    
    Logs for sparc64 and arm64 attached.  sparc64 looks quite good:
    
    71 failed, 33123 passed, 964 skipped, 1308 deselected, 31 xfailed, 4 xpassed, 423 warnings in 1080.09s (0:18:00)
    
    aarch64 less so. I tried three test runs and it never completed.
    At a random point python segfaults. Looks like infinite recursion.
    
    The machine isn't squeaky clean. It's running robert's cxx diffs and
    has a few other diffs. I doubt it's related, but before blocking on
    this, it would be good to have confirmation from a clean machine.
    
    #0  thrkill () at /tmp/-:3
    #1  <signal handler called>
    #2  0x00000009d345b8ac in FLOAT_isnan ()
       from /usr/local/lib/python3.10/site-packages/numpy/core/_multiarray_umath.cpython-310.so
    #3  0x00000009d35c4ca8 in generic_wrapped_legacy_loop ()
       from /usr/local/lib/python3.10/site-packages/numpy/core/_multiarray_umath.cpython-310.so
    #4  0x00000009d35c7b2c in execute_ufunc_loop ()
       from /usr/local/lib/python3.10/site-packages/numpy/core/_multiarray_umath.cpython-310.so
    #5  0x00000009d35c7b2c in execute_ufunc_loop ()
       from /usr/local/lib/python3.10/site-packages/numpy/core/_multiarray_umath.cpython-310.so
    #6  0x00000009d35c7b2c in execute_ufunc_loop ()
    
    ....
    
    Many thousands of frames deep. It happened once after ~10% of tests,
    once after ~80% of tests and once after ~90% of tests.
    cd /usr/ports/pobj/py-numpy-1.25.2-python3 && CC=cc PYTHONUSERBASE= PORTSDIR="/usr/ports" LIBTOOL="/usr/bin/libtool"  PATH='/usr/ports/pobj/py-numpy-1.25.2-python3/bin:/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin:/usr/X11R6/bin' PREFIX='/usr/local'  LOCALBASE='/usr/local' X11BASE='/usr/X11R6'  CFLAGS='-O2 -pipe -D CYTHON_SMALL_CODE='  TRUEPREFIX='/usr/local' DESTDIR=''  HOME='/py-numpy-1.25.2_writes_to_HOME' PICFLAG="-fPIC"  BINGRP=bin BINOWN=root BINMODE=755 NONBINMODE=644  DIRMODE=755  INSTALL_COPY=-c INSTALL_STRIP=-s  MANGRP=bin MANOWN=root MANMODE=644 BSD_INSTALL_PROGRAM="/usr/ports/pobj/py-numpy-1.25.2-python3/bin/install -c -s -m 755"  BSD_INSTALL_SCRIPT="/usr/ports/pobj/py-numpy-1.25.2-python3/bin/install -c -m 755"  BSD_INSTALL_DATA="/usr/ports/pobj/py-numpy-1.25.2-python3/bin/install -c -m 644"  BSD_INSTALL_MAN="/usr/ports/pobj/py-numpy-1.25.2-python3/bin/install -c -m 644"  BSD_INSTALL_PROGRAM_DIR="/usr/ports/pobj/py-numpy-1.25.2-python3/bin/install -d -m 755"  BSD_INSTALL_SCRIPT_DIR="/usr/ports/pobj/py-numpy-1.25.2-python3/bin/install -d -m 755"  BSD_INSTALL_DATA_DIR="/usr/ports/pobj/py-numpy-1.25.2-python3/bin/install -d -m 755"  BSD_INSTALL_MAN_DIR="/usr/ports/pobj/py-numpy-1.25.2-python3/bin/install -d -m 755" /usr/local/bin/python3.10 -c  'import numpy ; numpy.test()'
    /usr/local/lib/python3.10/site-packages/numpy/_pytesttester.py:143: DeprecationWarning: 
    
      `numpy.distutils` is deprecated since NumPy 1.23.0, as a result
      of the deprecation of `distutils` itself. It will be removed for
      Python >= 3.12. For older Python versions it will remain present.
      It is recommended to use `setuptools < 60.0` for those Python versions.
      For more details, see:
        https://numpy.org/devdocs/reference/distutils_status_migration.html 
    
    
      from numpy.distutils import cpuinfo
    NumPy version 1.25.2
    NumPy relaxed strides checking option: True
    NumPy CPU features:  nothing enabled
    ........................................................................ [  0%]
    ........................................................................ [  0%]
    ............................................................x........... [  0%]
    ........................................................................ [  0%]
    ........................................................................ [  1%]
    .................................x...................................... [  1%]
    ..............................F.F...F...F..F...F..F...F..F...F..F...F..F [  1%]
    ...F..F...F..F...F..F...F..F...F..F...F..F...F..F...F..F...F..F...F..F.. [  1%]
    .F..F...F..F...F..F...F..F...F..F...F..F...F..F...F..F...F..F........... [  1%]
    ........................................................................ [  2%]
    ........................................................................ [  2%]
    ........................................................................ [  2%]
    ........................................................................ [  2%]
    ............................................s..ssssssss................. [  2%]
    ........................................................................ [  3%]
    ........................................................................ [  3%]
    ........................................................................ [  3%]
    .......................................x..........x..x..........x....... [  3%]
    ........................................................................ [  4%]
    ........................................................................ [  4%]
    ........................................................................ [  4%]
    ........................................................................ [  4%]
    ........................................................................ [  4%]
    ...ssss................................................................. [  5%]
    ........................................................................ [  5%]
    ........................................................................ [  5%]
    ........................................................................ [  5%]
    ........................................................................ [  5%]
    ........................................................................ [  6%]
    ........................................................................ [  6%]
    ........................................................................ [  6%]
    ........................................................................ [  6%]
    ........................................................................ [  6%]
    ........................................................................ [  7%]
    ........................................................................ [  7%]
    ........................................................................ [  7%]
    ........................................................................ [  7%]
    ........................................................................ [  8%]
    ........................................................................ [  8%]
    ........................................................................ [  8%]
    ........................................................................ [  8%]
    ........................................................................ [  8%]
    ........................................................................ [  9%]
    ........................................Fsssss.s......ssss.sss.......... [  9%]
    .s...................................................................... [  9%]
    ........................................................................ [  9%]
    ...........................................xx........................... [  9%]
    ........................................................................ [ 10%]
    ........................................................................ [ 10%]
    ...............................................................s........ [ 10%]
    ........................................................................ [ 10%]
    ........................................................................ [ 10%]
    ........................................................................ [ 11%]
    ........................................................................ [ 11%]
    ........................................................................ [ 11%]
    ........................................................................ [ 11%]
    ........................................................................ [ 12%]
    ........................................................................ [ 12%]
    ........................................................................ [ 12%]
    ........................................................................ [ 12%]
    ........................................................................ [ 12%]
    ........................................................................ [ 13%]
    ........................................................................ [ 13%]
    ........................................................................ [ 13%]
    ........................................................................ [ 13%]
    ........................................................................ [ 13%]
    ........................................................................ [ 14%]
    ........................................................................ [ 14%]
    ........................................................................ [ 14%]
    ........................................................................ [ 14%]
    ........................................................................ [ 14%]
    ........................................................................ [ 15%]
    ........................................................................ [ 15%]
    ........................................................................ [ 15%]
    ........................................................................ [ 15%]
    ........................................................................ [ 16%]
    ........................................................................ [ 16%]
    ........................................................................ [ 16%]
    ........................................................................ [ 16%]
    ........................................................................ [ 16%]
    ........................................................................ [ 17%]
    ........................................................................ [ 17%]
    ........................................................................ [ 17%]
    ........................................................................ [ 17%]
    ........................................................................ [ 17%]
    ........................................................................ [ 18%]
    ........................................................................ [ 18%]
    ........................................................................ [ 18%]
    ........................................................................ [ 18%]
    ........................................................................ [ 18%]
    ........................................................................ [ 19%]
    ........................................................................ [ 19%]
    ........................................................................ [ 19%]
    ........................................................................ [ 19%]
    ........................................................................ [ 20%]
    ........................................................................ [ 20%]
    ........................................................................ [ 20%]
    ........................................................................ [ 20%]
    ........................................................................ [ 20%]
    ........................................................................ [ 21%]
    ........................................................................ [ 21%]
    ........................................................................ [ 21%]
    ........................................................................ [ 21%]
    ........................................................................ [ 21%]
    ........................................................................ [ 22%]
    ........................................................................ [ 22%]
    ........................................................................ [ 22%]
    ........................................................................ [ 22%]
    ........................................................................ [ 22%]
    ........................................................................ [ 23%]
    ........................................................................ [ 23%]
    ........................................................................ [ 23%]
    ........................................................................ [ 23%]
    ........................................................................ [ 24%]
    ........................................................................ [ 24%]
    ........................................................................ [ 24%]
    ........................................................................ [ 24%]
    ........................................................................ [ 24%]
    ........................................................................ [ 25%]
    ........................................................................ [ 25%]
    ........................................................................ [ 25%]
    ........................................................................ [ 25%]
    ........................................................................ [ 25%]
    ........................................................................ [ 26%]
    ........................................................................ [ 26%]
    ........................................................................ [ 26%]
    ........................................................................ [ 26%]
    ........................................................................ [ 26%]
    ........................................................................ [ 27%]
    ........................................................................ [ 27%]
    ........................................................................ [ 27%]
    ........................................................................ [ 27%]
    ........................................................................ [ 28%]
    ........................................................................ [ 28%]
    ........................................................................ [ 28%]
    ........................................................................ [ 28%]
    ........................................................................ [ 28%]
    ........................................................................ [ 29%]
    ........................................................................ [ 29%]
    ........................................................................ [ 29%]
    ........................................................................ [ 29%]
    ........................................................................ [ 29%]
    ........................................................................ [ 30%]
    ........................................................................ [ 30%]
    ........................................................................ [ 30%]
    ........................................................................ [ 30%]
    ........................................................................ [ 30%]
    ........................................................................ [ 31%]
    ........................................................................ [ 31%]
    ........................................................................ [ 31%]
    ........................................................................ [ 31%]
    ........................................................................ [ 32%]
    ........................................................................ [ 32%]
    ........................................................................ [ 32%]
    ........................................................................ [ 32%]
    ........................................................................ [ 32%]
    ........................................................................ [ 33%]
    ........................................................................ [ 33%]
    ........................................................................ [ 33%]
    ........................................................................ [ 33%]
    ........................................................................ [ 33%]
    ........................................................................ [ 34%]
    ........................................................................ [ 34%]
    ........................................................................ [ 34%]
    ........................................................................ [ 34%]
    ........................................................................ [ 34%]
    ........................................................................ [ 35%]
    ........................................................................ [ 35%]
    ........................................................................ [ 35%]
    ........................................................................ [ 35%]
    ........................................................................ [ 36%]
    ........................................................................ [ 36%]
    ........................................................................ [ 36%]
    ........................................................................ [ 36%]
    ........................................................................ [ 36%]
    ........................................................................ [ 37%]
    ........................................................................ [ 37%]
    ........................................................................ [ 37%]
    ........................................................................ [ 37%]
    ........................................................................ [ 37%]
    ........................................................................ [ 38%]
    ........................................................................ [ 38%]
    ........................................................................ [ 38%]
    ........................................................................ [ 38%]
    ....s.............................................x...x................. [ 38%]
    ...........F..F......................................................... [ 39%]
    ........................................................................ [ 39%]
    ....................................................X................... [ 39%]
    ........................................................................ [ 39%]
    ........................................................................ [ 40%]
    ........................................................................ [ 40%]
    ........................................................................ [ 40%]
    ........................................................................ [ 40%]
    ..F..................................................................... [ 40%]
    ........................................................................ [ 41%]
    ........................................................................ [ 41%]
    ........................................................................ [ 41%]
    .........................s.............................................. [ 41%]
    ........................................................................ [ 41%]
    ........................................................................ [ 42%]
    ........................................................................ [ 42%]
    ........................................................................ [ 42%]
    ...s.................................................................... [ 42%]
    ........................................................................ [ 42%]
    ..................................................s..................... [ 43%]
    ........................................................................ [ 43%]
    ........................................................................ [ 43%]
    .................ssssss................................................. [ 43%]
    ........................................................................ [ 44%]
    .....Fs................................................................. [ 44%]
    ........................................................................ [ 44%]
    ........................................................................ [ 44%]
    .sssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss [ 44%]
    ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss [ 45%]
    ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss [ 45%]
    ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss [ 45%]
    ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss [ 45%]
    ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss [ 45%]
    ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss [ 46%]
    ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss [ 46%]
    ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss [ 46%]
    ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss [ 46%]
    sssssssssssssssssssss................................................... [ 46%]
    ........................................................................ [ 47%]
    ........................................................................ [ 47%]
    ........................................................................ [ 47%]
    ...........s............................................................ [ 47%]
    ........................................................................ [ 48%]
    ........................................................................ [ 48%]
    ........................................................................ [ 48%]
    ........................................................................ [ 48%]
    ........................................................................ [ 48%]
    ........................................................................ [ 49%]
    .........................................................xxxxxxx........ [ 49%]
    ........................................................................ [ 49%]
    ........................................................................ [ 49%]
    ........................................................................ [ 49%]
    .................................................ssss..........Fssssssss [ 50%]
    ........................................................................ [ 50%]
    ........................................................................ [ 50%]
    ..................................................................F..... [ 50%]
    .......................................F................................ [ 50%]
    ........................................................................ [ 51%]
    ........................................................................ [ 51%]
    ........................................................................ [ 51%]
    ........................................................................ [ 51%]
    ........................................................................ [ 52%]
    ........................................................................ [ 52%]
    ........................................................................ [ 52%]
    ........................................................................ [ 52%]
    ........................................................................ [ 52%]
    ........................................................................ [ 53%]
    ........................................................................ [ 53%]
    ........................................................................ [ 53%]
    ........................................................................ [ 53%]
    ........................................................................ [ 53%]
    ........................................................................ [ 54%]
    ........................................................................ [ 54%]
    ........................................................................ [ 54%]
    ........................................................................ [ 54%]
    ........................................................................ [ 54%]
    ........................................................................ [ 55%]
    ........................................................................ [ 55%]
    ........................................................................ [ 55%]
    ........................................................................ [ 55%]
    ........................................................................ [ 56%]
    ........................................................................ [ 56%]
    ........................................................................ [ 56%]
    ........................................................................ [ 56%]
    ........................................................................ [ 56%]
    ........................................................................ [ 57%]
    ........................................................................ [ 57%]
    ........................................................................ [ 57%]
    ........................................................................ [ 57%]
    ........................................................................ [ 57%]
    ........................................................................ [ 58%]
    ........................................................................ [ 58%]
    ........................................................................ [ 58%]
    ........................................................................ [ 58%]
    ........................................................................ [ 58%]
    ........................................................................ [ 59%]
    ........................................................................ [ 59%]
    ........................................................................ [ 59%]
    ........................................................................ [ 59%]
    ........................................................................ [ 60%]
    ........................................................................ [ 60%]
    ........................................................................ [ 60%]
    ........................................................................ [ 60%]
    .......................................................ssssssssssssF..F. [ 60%]
    ........................................................................ [ 61%]
    ..........................................................FF.FFF........ [ 61%]
    ........................................................................ [ 61%]
    ........................................................................ [ 61%]
    ......s................................................................. [ 61%]
    ........................................................................ [ 62%]
    ...........................................ssssssssssssss............... [ 62%]
    ........................................................................ [ 62%]
    .........................................s.............................. [ 62%]
    ...........ss.s..s.......s.............................................. [ 62%]
    ........................................................................ [ 63%]
    ........................................................................ [ 63%]
    ........................................................................ [ 63%]
    ........................................................................ [ 63%]
    ........................................................................ [ 64%]
    ........................................................................ [ 64%]
    ........................................................................ [ 64%]
    ........................................................................ [ 64%]
    ............................................................F........... [ 64%]
    ..s...........sssssssssssssss...............sssssssssssssss............. [ 65%]
    ........................................................................ [ 65%]
    ........................................................................ [ 65%]
    ........................................................................ [ 65%]
    ........................................................................ [ 65%]
    ........................................................................ [ 66%]
    ........................................................................ [ 66%]
    ........................................................................ [ 66%]
    ........................................................................ [ 66%]
    .....................................................................s.. [ 66%]
    .........................................................sss.....x...... [ 67%]
    .......X.........x...........................F..F...F...F............... [ 67%]
    ........................................................................ [ 67%]
    ........................................................................ [ 67%]
    ........................................................................ [ 68%]
    .....................................................................x.. [ 68%]
    ........................................................................ [ 68%]
    ........................................................................ [ 68%]
    ........................................................................ [ 68%]
    ........................................................................ [ 69%]
    ........................................................................ [ 69%]
    ........................................................................ [ 69%]
    ........................................................................ [ 69%]
    ........................................................................ [ 69%]
    ....................................s................................... [ 70%]
    ........................................................................ [ 70%]
    ..................................................................x..... [ 70%]
    ........................................................................ [ 70%]
    ........................................................................ [ 70%]
    ........................................................................ [ 71%]
    ........................................................................ [ 71%]
    ........................................................................ [ 71%]
    ........................................................................ [ 71%]
    ........................................................................ [ 72%]
    ........................................................................ [ 72%]
    ........................................................................ [ 72%]
    ........................................................................ [ 72%]
    ........................................................................ [ 72%]
    ........................................................................ [ 73%]
    ........................................................................ [ 73%]
    ........................................................................ [ 73%]
    ........................................................................ [ 73%]
    ........................................................................ [ 73%]
    ........................................................................ [ 74%]
    ...........................................................x...x........ [ 74%]
    .....s.....x............................................................ [ 74%]
    ..............ss.ss.ss.ss.ss.ss.ss...................................... [ 74%]
    ....ss.ss.ss.ss.ss.ss.ss................................................ [ 74%]
    ........................................................................ [ 75%]
    ........................................................................ [ 75%]
    ........................................................................ [ 75%]
    ........................................................................ [ 75%]
    ........................................................................ [ 76%]
    ........................................................................ [ 76%]
    ........................................................................ [ 76%]
    ........................................................................ [ 76%]
    ................................................................ss.ss.ss [ 76%]
    .ss.ss.ss.ss...........................................ss.ss.ss.ss.ss.ss [ 77%]
    .ss.......................................ss.ss.ss.ss.ss.ss.ss.......... [ 77%]
    ........................................................................ [ 77%]
    .....................................ss.ss.ss.ss.....................ss. [ 77%]
    ss.ss.ss................................................................ [ 77%]
    ........................................................................ [ 78%]
    ........................................................................ [ 78%]
    ........................................................................ [ 78%]
    ........................................................................ [ 78%]
    ........................................................................ [ 78%]
    ........................................................................ [ 79%]
    ........................................................................ [ 79%]
    ........................................................................ [ 79%]
    ....................................x................................... [ 79%]
    ........................................................................ [ 80%]
    ........................................................................ [ 80%]
    ........................................................................ [ 80%]
    ........................................................................ [ 80%]
    ........sx.............................................................. [ 80%]
    ........................................................................ [ 81%]
    ........................................................................ [ 81%]
    ........................................................................ [ 81%]
    ........................................................................ [ 81%]
    ........................................................................ [ 81%]
    ........................................................................ [ 82%]
    ........................................................................ [ 82%]
    ........................................................................ [ 82%]
    ........................................................................ [ 82%]
    ........................................................................ [ 82%]
    ........................................................................ [ 83%]
    ........................................................................ [ 83%]
    ........................................................................ [ 83%]
    ........................................................................ [ 83%]
    ........................................................................ [ 84%]
    ........................................................................ [ 84%]
    ........................................................................ [ 84%]
    ........................................................................ [ 84%]
    ........................................................................ [ 84%]
    ........................................................................ [ 85%]
    ........................................................................ [ 85%]
    ........................................................................ [ 85%]
    ........................................................................ [ 85%]
    ........................................................................ [ 85%]
    ........................................................................ [ 86%]
    ........................................................................ [ 86%]
    ........................................................................ [ 86%]
    ........................................................................ [ 86%]
    ........................................................................ [ 86%]
    ........................................................................ [ 87%]
    ........................................................................ [ 87%]
    ........................................................................ [ 87%]
    ........................................................................ [ 87%]
    ........................................................................ [ 88%]
    ........................................................................ [ 88%]
    ........................................................................ [ 88%]
    ........................................................................ [ 88%]
    ........................................................................ [ 88%]
    ........................................................................ [ 89%]
    ........................................................................ [ 89%]
    ........................................................................ [ 89%]
    ........................................................................ [ 89%]
    ........................................................................ [ 89%]
    ........................................................................ [ 90%]
    ........................................................................ [ 90%]
    ........................................................................ [ 90%]
    ........................................................................ [ 90%]
    ........................................................................ [ 90%]
    ........................................................................ [ 91%]
    ........................................................................ [ 91%]
    ...............................................s........................ [ 91%]
    ..................................................xx.................... [ 91%]
    ........................................................................ [ 92%]
    ........................................................................ [ 92%]
    ........................................................................ [ 92%]
    ........................................................................ [ 92%]
    ........................................................................ [ 92%]
    ........................................................................ [ 93%]
    ........................................................................ [ 93%]
    ........................................................................ [ 93%]
    ........................................................................ [ 93%]
    ........................................................................ [ 93%]
    ........................................................................ [ 94%]
    ........................................................................ [ 94%]
    ........................................................................ [ 94%]
    ........................................................................ [ 94%]
    ........................................................................ [ 94%]
    ........................................................................ [ 95%]
    ........................................................................ [ 95%]
    .........................................................s.............. [ 95%]
    ..s.................s.................s.................s....ss......... [ 95%]
    ........................................................................ [ 96%]
    ........................................................................ [ 96%]
    ........................................................................ [ 96%]
    ........................................................................ [ 96%]
    ........................................................................ [ 96%]
    ........................................................................ [ 97%]
    ........................................................................ [ 97%]
    ........................................................................ [ 97%]
    ........................................................................ [ 97%]
    .............s.......................................................... [ 97%]
    ........................................................................ [ 98%]
    ........................................................................ [ 98%]
    ........................................................................ [ 98%]
    ................ss...................................................... [ 98%]
    ........................................................................ [ 98%]
    ........................................................................ [ 99%]
    ........................................................................ [ 99%]
    ........................................................................ [ 99%]
    ........................................................................ [ 99%]
    ...........ssss...........X........xxX.......................x...        [100%]
    =================================== FAILURES ===================================
    _____________ test_floatingpoint_errors_casting[longdouble-to-f21] _____________
    
    dtype = dtype('float32'), value = 1.0000000000000000525047602552044202e+300
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) were emitted. The list of emitted warnings is: [].
    
    dtype      = dtype('float32')
    match      = 'overflow'
    operation  = <function check_operations.<locals>.assignment at 0x4e10bc6a70>
    value      = 1.0000000000000000525047602552044202e+300
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    _____________ test_floatingpoint_errors_casting[longdouble-to-f8] ______________
    
    dtype = dtype('float64'), value = 1.189731495357231765085759326628007e+4932
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) were emitted. The list of emitted warnings is: [].
    
    dtype      = dtype('float64')
    match      = 'overflow'
    operation  = <function check_operations.<locals>.assignment at 0x4e4bf84040>
    value      = 1.189731495357231765085759326628007e+4932
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    _____________ test_floatingpoint_errors_casting[longdouble-to-c8] ______________
    
    dtype = dtype('complex64'), value = 2.0000000000000001050095205104088405e+300
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) were emitted. The list of emitted warnings is: [].
    
    dtype      = dtype('complex64')
    match      = 'overflow'
    operation  = <function check_operations.<locals>.assignment at 0x4e4bf86cb0>
    value      = 2.0000000000000001050095205104088405e+300
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    _________________ test_floatingpoint_errors_casting[inf-to-b3] _________________
    
    dtype = dtype('int8'), value = inf
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) were emitted. The list of emitted warnings is: [].
    
    dtype      = dtype('int8')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.copyto_scalar at 0x4e4bf841f0>
    value      = inf
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    ______________ test_floatingpoint_errors_casting[(inf+0j)-to-b2] _______________
    
    dtype = dtype('int8'), value = (inf+0j)
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) matching ('invalid') were emitted. The list of emitted warnings is: [ComplexWarning('Casting complex values to real discards the imaginary part')].
    
    dtype      = dtype('int8')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.copyto_scalar at 0x4e4bf87ac0>
    value      = (inf+0j)
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    _________________ test_floatingpoint_errors_casting[nan-to-b3] _________________
    
    dtype = dtype('int8'), value = nan
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) were emitted. The list of emitted warnings is: [].
    
    dtype      = dtype('int8')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.copyto_scalar at 0x4e4bf86dd0>
    value      = nan
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    ______________ test_floatingpoint_errors_casting[(nan+0j)-to-b2] _______________
    
    dtype = dtype('int8'), value = (nan+0j)
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) matching ('invalid') were emitted. The list of emitted warnings is: [ComplexWarning('Casting complex values to real discards the imaginary part')].
    
    dtype      = dtype('int8')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.copyto_scalar at 0x4e4bf877f0>
    value      = (nan+0j)
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    _________________ test_floatingpoint_errors_casting[inf-to-B3] _________________
    
    dtype = dtype('uint8'), value = inf
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) were emitted. The list of emitted warnings is: [].
    
    dtype      = dtype('uint8')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.assignment at 0x4e4bf85510>
    value      = inf
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    ______________ test_floatingpoint_errors_casting[(inf+0j)-to-B2] _______________
    
    dtype = dtype('uint8'), value = (inf+0j)
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) matching ('invalid') were emitted. The list of emitted warnings is: [ComplexWarning('Casting complex values to real discards the imaginary part')].
    
    dtype      = dtype('uint8')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.assignment at 0x4e4bf856c0>
    value      = (inf+0j)
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    _________________ test_floatingpoint_errors_casting[nan-to-B3] _________________
    
    dtype = dtype('uint8'), value = nan
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) were emitted. The list of emitted warnings is: [].
    
    dtype      = dtype('uint8')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.assignment at 0x4e4bf869e0>
    value      = nan
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    ______________ test_floatingpoint_errors_casting[(nan+0j)-to-B2] _______________
    
    dtype = dtype('uint8'), value = (nan+0j)
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) matching ('invalid') were emitted. The list of emitted warnings is: [ComplexWarning('Casting complex values to real discards the imaginary part')].
    
    dtype      = dtype('uint8')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.assignment at 0x4e4bf845e0>
    value      = (nan+0j)
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    _________________ test_floatingpoint_errors_casting[inf-to-h3] _________________
    
    dtype = dtype('int16'), value = inf
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) were emitted. The list of emitted warnings is: [].
    
    dtype      = dtype('int16')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.copyto_scalar at 0x4e4bf875b0>
    value      = inf
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    ______________ test_floatingpoint_errors_casting[(inf+0j)-to-h2] _______________
    
    dtype = dtype('int16'), value = (inf+0j)
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) matching ('invalid') were emitted. The list of emitted warnings is: [ComplexWarning('Casting complex values to real discards the imaginary part')].
    
    dtype      = dtype('int16')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.copyto_scalar at 0x4e4bf86050>
    value      = (inf+0j)
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    _________________ test_floatingpoint_errors_casting[nan-to-h3] _________________
    
    dtype = dtype('int16'), value = nan
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) were emitted. The list of emitted warnings is: [].
    
    dtype      = dtype('int16')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.copyto_scalar at 0x4e4bf85750>
    value      = nan
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    ______________ test_floatingpoint_errors_casting[(nan+0j)-to-h2] _______________
    
    dtype = dtype('int16'), value = (nan+0j)
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) matching ('invalid') were emitted. The list of emitted warnings is: [ComplexWarning('Casting complex values to real discards the imaginary part')].
    
    dtype      = dtype('int16')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.copyto_scalar at 0x4e4bf84af0>
    value      = (nan+0j)
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    _________________ test_floatingpoint_errors_casting[inf-to-H3] _________________
    
    dtype = dtype('uint16'), value = inf
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) were emitted. The list of emitted warnings is: [].
    
    dtype      = dtype('uint16')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.assignment at 0x4e4bf85c60>
    value      = inf
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    ______________ test_floatingpoint_errors_casting[(inf+0j)-to-H2] _______________
    
    dtype = dtype('uint16'), value = (inf+0j)
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) matching ('invalid') were emitted. The list of emitted warnings is: [ComplexWarning('Casting complex values to real discards the imaginary part')].
    
    dtype      = dtype('uint16')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.assignment at 0x4e4bf85870>
    value      = (inf+0j)
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    _________________ test_floatingpoint_errors_casting[nan-to-H3] _________________
    
    dtype = dtype('uint16'), value = nan
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) were emitted. The list of emitted warnings is: [].
    
    dtype      = dtype('uint16')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.assignment at 0x4e4bf84790>
    value      = nan
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    ______________ test_floatingpoint_errors_casting[(nan+0j)-to-H2] _______________
    
    dtype = dtype('uint16'), value = (nan+0j)
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) matching ('invalid') were emitted. The list of emitted warnings is: [ComplexWarning('Casting complex values to real discards the imaginary part')].
    
    dtype      = dtype('uint16')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.assignment at 0x4e4bf849d0>
    value      = (nan+0j)
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    _________________ test_floatingpoint_errors_casting[inf-to-i3] _________________
    
    dtype = dtype('int32'), value = inf
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) were emitted. The list of emitted warnings is: [].
    
    dtype      = dtype('int32')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.copyto_scalar at 0x4e4bf85360>
    value      = inf
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    ______________ test_floatingpoint_errors_casting[(inf+0j)-to-i2] _______________
    
    dtype = dtype('int32'), value = (inf+0j)
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) matching ('invalid') were emitted. The list of emitted warnings is: [ComplexWarning('Casting complex values to real discards the imaginary part')].
    
    dtype      = dtype('int32')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.copyto_scalar at 0x4de568b0a0>
    value      = (inf+0j)
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    _________________ test_floatingpoint_errors_casting[nan-to-i3] _________________
    
    dtype = dtype('int32'), value = nan
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) were emitted. The list of emitted warnings is: [].
    
    dtype      = dtype('int32')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.copyto_scalar at 0x4de568a710>
    value      = nan
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    ______________ test_floatingpoint_errors_casting[(nan+0j)-to-i2] _______________
    
    dtype = dtype('int32'), value = (nan+0j)
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) matching ('invalid') were emitted. The list of emitted warnings is: [ComplexWarning('Casting complex values to real discards the imaginary part')].
    
    dtype      = dtype('int32')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.copyto_scalar at 0x4de568b7f0>
    value      = (nan+0j)
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    _________________ test_floatingpoint_errors_casting[inf-to-I3] _________________
    
    dtype = dtype('uint32'), value = inf
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) were emitted. The list of emitted warnings is: [].
    
    dtype      = dtype('uint32')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.assignment at 0x4e10bc6a70>
    value      = inf
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    ______________ test_floatingpoint_errors_casting[(inf+0j)-to-I2] _______________
    
    dtype = dtype('uint32'), value = (inf+0j)
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) matching ('invalid') were emitted. The list of emitted warnings is: [ComplexWarning('Casting complex values to real discards the imaginary part')].
    
    dtype      = dtype('uint32')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.assignment at 0x4de568b6d0>
    value      = (inf+0j)
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    _________________ test_floatingpoint_errors_casting[nan-to-I3] _________________
    
    dtype = dtype('uint32'), value = nan
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) were emitted. The list of emitted warnings is: [].
    
    dtype      = dtype('uint32')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.assignment at 0x4de568b910>
    value      = nan
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    ______________ test_floatingpoint_errors_casting[(nan+0j)-to-I2] _______________
    
    dtype = dtype('uint32'), value = (nan+0j)
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) matching ('invalid') were emitted. The list of emitted warnings is: [ComplexWarning('Casting complex values to real discards the imaginary part')].
    
    dtype      = dtype('uint32')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.assignment at 0x4de568b0a0>
    value      = (nan+0j)
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    _________________ test_floatingpoint_errors_casting[inf-to-l3] _________________
    
    dtype = dtype('int64'), value = inf
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) were emitted. The list of emitted warnings is: [].
    
    dtype      = dtype('int64')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.copyto_scalar at 0x4e4bf03f40>
    value      = inf
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    ______________ test_floatingpoint_errors_casting[(inf+0j)-to-l2] _______________
    
    dtype = dtype('int64'), value = (inf+0j)
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) matching ('invalid') were emitted. The list of emitted warnings is: [ComplexWarning('Casting complex values to real discards the imaginary part')].
    
    dtype      = dtype('int64')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.copyto_scalar at 0x4e4bf03760>
    value      = (inf+0j)
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    _________________ test_floatingpoint_errors_casting[nan-to-l3] _________________
    
    dtype = dtype('int64'), value = nan
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) were emitted. The list of emitted warnings is: [].
    
    dtype      = dtype('int64')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.copyto_scalar at 0x4e4bf85a20>
    value      = nan
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    ______________ test_floatingpoint_errors_casting[(nan+0j)-to-l2] _______________
    
    dtype = dtype('int64'), value = (nan+0j)
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) matching ('invalid') were emitted. The list of emitted warnings is: [ComplexWarning('Casting complex values to real discards the imaginary part')].
    
    dtype      = dtype('int64')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.copyto_scalar at 0x4e4bf02dd0>
    value      = (nan+0j)
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    _________________ test_floatingpoint_errors_casting[inf-to-L3] _________________
    
    dtype = dtype('uint64'), value = inf
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) were emitted. The list of emitted warnings is: [].
    
    dtype      = dtype('uint64')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.assignment at 0x4e4bf02950>
    value      = inf
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    ______________ test_floatingpoint_errors_casting[(inf+0j)-to-L2] _______________
    
    dtype = dtype('uint64'), value = (inf+0j)
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) matching ('invalid') were emitted. The list of emitted warnings is: [ComplexWarning('Casting complex values to real discards the imaginary part')].
    
    dtype      = dtype('uint64')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.assignment at 0x4e4bf01a20>
    value      = (inf+0j)
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    _________________ test_floatingpoint_errors_casting[nan-to-L3] _________________
    
    dtype = dtype('uint64'), value = nan
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) were emitted. The list of emitted warnings is: [].
    
    dtype      = dtype('uint64')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.assignment at 0x4e4bf02b90>
    value      = nan
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    ______________ test_floatingpoint_errors_casting[(nan+0j)-to-L2] _______________
    
    dtype = dtype('uint64'), value = (nan+0j)
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) matching ('invalid') were emitted. The list of emitted warnings is: [ComplexWarning('Casting complex values to real discards the imaginary part')].
    
    dtype      = dtype('uint64')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.assignment at 0x4e4bf03be0>
    value      = (nan+0j)
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    _________________ test_floatingpoint_errors_casting[inf-to-q3] _________________
    
    dtype = dtype('int64'), value = inf
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) were emitted. The list of emitted warnings is: [].
    
    dtype      = dtype('int64')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.copyto_scalar at 0x4e4bf85a20>
    value      = inf
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    ______________ test_floatingpoint_errors_casting[(inf+0j)-to-q2] _______________
    
    dtype = dtype('int64'), value = (inf+0j)
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) matching ('invalid') were emitted. The list of emitted warnings is: [ComplexWarning('Casting complex values to real discards the imaginary part')].
    
    dtype      = dtype('int64')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.copyto_scalar at 0x4e4bf031c0>
    value      = (inf+0j)
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    _________________ test_floatingpoint_errors_casting[nan-to-q3] _________________
    
    dtype = dtype('int64'), value = nan
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) were emitted. The list of emitted warnings is: [].
    
    dtype      = dtype('int64')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.copyto_scalar at 0x4e4bf03e20>
    value      = nan
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    ______________ test_floatingpoint_errors_casting[(nan+0j)-to-q2] _______________
    
    dtype = dtype('int64'), value = (nan+0j)
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) matching ('invalid') were emitted. The list of emitted warnings is: [ComplexWarning('Casting complex values to real discards the imaginary part')].
    
    dtype      = dtype('int64')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.copyto_scalar at 0x4e4bf02e60>
    value      = (nan+0j)
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    _________________ test_floatingpoint_errors_casting[inf-to-Q3] _________________
    
    dtype = dtype('uint64'), value = inf
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) were emitted. The list of emitted warnings is: [].
    
    dtype      = dtype('uint64')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.assignment at 0x4e4bf000d0>
    value      = inf
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    ______________ test_floatingpoint_errors_casting[(inf+0j)-to-Q2] _______________
    
    dtype = dtype('uint64'), value = (inf+0j)
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) matching ('invalid') were emitted. The list of emitted warnings is: [ComplexWarning('Casting complex values to real discards the imaginary part')].
    
    dtype      = dtype('uint64')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.assignment at 0x4e4bf01510>
    value      = (inf+0j)
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    _________________ test_floatingpoint_errors_casting[nan-to-Q3] _________________
    
    dtype = dtype('uint64'), value = nan
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) were emitted. The list of emitted warnings is: [].
    
    dtype      = dtype('uint64')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.assignment at 0x4e4bf01bd0>
    value      = nan
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    ______________ test_floatingpoint_errors_casting[(nan+0j)-to-Q2] _______________
    
    dtype = dtype('uint64'), value = (nan+0j)
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) matching ('invalid') were emitted. The list of emitted warnings is: [ComplexWarning('Casting complex values to real discards the imaginary part')].
    
    dtype      = dtype('uint64')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.assignment at 0x4e4bf02a70>
    value      = (nan+0j)
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    _________________ test_floatingpoint_errors_casting[inf-to-p3] _________________
    
    dtype = dtype('int64'), value = inf
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) were emitted. The list of emitted warnings is: [].
    
    dtype      = dtype('int64')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.copyto_scalar at 0x4e4bf00820>
    value      = inf
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    ______________ test_floatingpoint_errors_casting[(inf+0j)-to-p2] _______________
    
    dtype = dtype('int64'), value = (inf+0j)
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) matching ('invalid') were emitted. The list of emitted warnings is: [ComplexWarning('Casting complex values to real discards the imaginary part')].
    
    dtype      = dtype('int64')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.copyto_scalar at 0x4ebad0f9a0>
    value      = (inf+0j)
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    _________________ test_floatingpoint_errors_casting[nan-to-p3] _________________
    
    dtype = dtype('int64'), value = nan
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) were emitted. The list of emitted warnings is: [].
    
    dtype      = dtype('int64')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.copyto_scalar at 0x4e4bf01e10>
    value      = nan
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    ______________ test_floatingpoint_errors_casting[(nan+0j)-to-p2] _______________
    
    dtype = dtype('int64'), value = (nan+0j)
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) matching ('invalid') were emitted. The list of emitted warnings is: [ComplexWarning('Casting complex values to real discards the imaginary part')].
    
    dtype      = dtype('int64')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.copyto_scalar at 0x4e4bf01cf0>
    value      = (nan+0j)
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    _________________ test_floatingpoint_errors_casting[inf-to-P3] _________________
    
    dtype = dtype('uint64'), value = inf
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) were emitted. The list of emitted warnings is: [].
    
    dtype      = dtype('uint64')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.assignment at 0x4e4bf85a20>
    value      = inf
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    ______________ test_floatingpoint_errors_casting[(inf+0j)-to-P2] _______________
    
    dtype = dtype('uint64'), value = (inf+0j)
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) matching ('invalid') were emitted. The list of emitted warnings is: [ComplexWarning('Casting complex values to real discards the imaginary part')].
    
    dtype      = dtype('uint64')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.assignment at 0x4e4bf000d0>
    value      = (inf+0j)
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    _________________ test_floatingpoint_errors_casting[nan-to-P3] _________________
    
    dtype = dtype('uint64'), value = nan
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) were emitted. The list of emitted warnings is: [].
    
    dtype      = dtype('uint64')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.assignment at 0x4e407f60e0>
    value      = nan
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    ______________ test_floatingpoint_errors_casting[(nan+0j)-to-P2] _______________
    
    dtype = dtype('uint64'), value = (nan+0j)
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize(["value", "dtype"], values_and_dtypes())
        @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
        def test_floatingpoint_errors_casting(dtype, value):
            dtype = np.dtype(dtype)
            for operation in check_operations(dtype, value):
                dtype = np.dtype(dtype)
        
                match = "invalid" if dtype.kind in 'iu' else "overflow"
    >           with pytest.warns(RuntimeWarning, match=match):
    E           Failed: DID NOT WARN. No warnings of type (<class 'RuntimeWarning'>,) matching ('invalid') were emitted. The list of emitted warnings is: [ComplexWarning('Casting complex values to real discards the imaginary part')].
    
    dtype      = dtype('uint64')
    match      = 'invalid'
    operation  = <function check_operations.<locals>.assignment at 0x4e46111000>
    value      = (nan+0j)
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_casting_floatingpoint_errors.py:148: Failed
    _____________________________ test_repr_roundtrip ______________________________
    
        @pytest.mark.skipif(IS_MUSL,
                            reason="test flaky on musllinux")
        @pytest.mark.skipif(LD_INFO.precision + 2 >= repr_precision,
                            reason="repr precision not enough to show eps")
        def test_repr_roundtrip():
            # We will only see eps in repr if within printing precision.
            o = 1 + LD_INFO.eps
    >       assert_equal(np.longdouble(repr(o)), o, "repr was %s" % repr(o))
    E       AssertionError: 
    E       Items are not equal: repr was 1.0000000000000000000000000000000002
    E        ACTUAL: 1.0
    E        DESIRED: 1.0000000000000000000000000000000002
    
    o          = 1.0000000000000000000000000000000002
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_longdouble.py:43: AssertionError
    _______________ TestFloatExceptions.test_floating_exceptions[g] ________________
    
    self = <numpy.core.tests.test_numeric.TestFloatExceptions object at 0x4df4f287c0>
    typecode = 'g'
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize("typecode", np.typecodes["AllFloat"])
        def test_floating_exceptions(self, typecode):
            # Test basic arithmetic function errors
            with np.errstate(all='raise'):
                ftype = np.obj2sctype(typecode)
                if np.dtype(ftype).kind == 'f':
                    # Get some extreme values for the type
                    fi = np.finfo(ftype)
                    ft_tiny = fi._machar.tiny
                    ft_max = fi.max
                    ft_eps = fi.eps
                    underflow = 'underflow'
                    divbyzero = 'divide by zero'
                else:
                    # 'c', complex, corresponding real dtype
                    rtype = type(ftype(0).real)
                    fi = np.finfo(rtype)
                    ft_tiny = ftype(fi._machar.tiny)
                    ft_max = ftype(fi.max)
                    ft_eps = ftype(fi.eps)
                    # The complex types raise different exceptions
                    underflow = ''
                    divbyzero = ''
                overflow = 'overflow'
                invalid = 'invalid'
        
                # The value of tiny for double double is NaN, so we need to
                # pass the assert
                if not np.isnan(ft_tiny):
    >               self.assert_raises_fpe(underflow,
                                        lambda a, b: a/b, ft_tiny, ft_max)
    
    divbyzero  = 'divide by zero'
    fi         = finfo(resolution=1e-33, min=-1.189731495357231765085759326628007e+4932, max=1.189731495357231765085759326628007e+4932, dtype=float128)
    ft_eps     = 1.9259299443872358530559779425849273e-34
    ft_max     = 1.189731495357231765085759326628007e+4932
    ft_tiny    = array(3.36210314e-4932, dtype=float128)
    ftype      = <class 'numpy.longdouble'>
    invalid    = 'invalid'
    overflow   = 'overflow'
    self       = <numpy.core.tests.test_numeric.TestFloatExceptions object at 0x4df4f287c0>
    typecode   = 'g'
    underflow  = 'underflow'
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_numeric.py:675: 
    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
    
    self = <numpy.core.tests.test_numeric.TestFloatExceptions object at 0x4df4f287c0>
    fpeerr = 'underflow'
    flop = <function TestFloatExceptions.test_floating_exceptions.<locals>.<lambda> at 0x4e6b512710>
    x = array(3.36210314e-4932, dtype=float128)
    y = 1.189731495357231765085759326628007e+4932
    
        def assert_raises_fpe(self, fpeerr, flop, x, y):
            ftype = type(x)
            try:
                flop(x, y)
    >           assert_(False,
                        "Type %s did not raise fpe error '%s'." % (ftype, fpeerr))
    E                   AssertionError: Type <class 'numpy.ndarray'> did not raise fpe error 'underflow'.
    
    flop       = <function TestFloatExceptions.test_floating_exceptions.<locals>.<lambda> at 0x4e6b512710>
    fpeerr     = 'underflow'
    ftype      = <class 'numpy.ndarray'>
    self       = <numpy.core.tests.test_numeric.TestFloatExceptions object at 0x4df4f287c0>
    x          = array(3.36210314e-4932, dtype=float128)
    y          = 1.189731495357231765085759326628007e+4932
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_numeric.py:626: AssertionError
    _______________ TestFloatExceptions.test_floating_exceptions[G] ________________
    
    self = <numpy.core.tests.test_numeric.TestFloatExceptions object at 0x4df4f28fd0>
    typecode = 'G'
    
        @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support")
        @pytest.mark.parametrize("typecode", np.typecodes["AllFloat"])
        def test_floating_exceptions(self, typecode):
            # Test basic arithmetic function errors
            with np.errstate(all='raise'):
                ftype = np.obj2sctype(typecode)
                if np.dtype(ftype).kind == 'f':
                    # Get some extreme values for the type
                    fi = np.finfo(ftype)
                    ft_tiny = fi._machar.tiny
                    ft_max = fi.max
                    ft_eps = fi.eps
                    underflow = 'underflow'
                    divbyzero = 'divide by zero'
                else:
                    # 'c', complex, corresponding real dtype
                    rtype = type(ftype(0).real)
                    fi = np.finfo(rtype)
                    ft_tiny = ftype(fi._machar.tiny)
                    ft_max = ftype(fi.max)
                    ft_eps = ftype(fi.eps)
                    # The complex types raise different exceptions
                    underflow = ''
                    divbyzero = ''
                overflow = 'overflow'
                invalid = 'invalid'
        
                # The value of tiny for double double is NaN, so we need to
                # pass the assert
                if not np.isnan(ft_tiny):
    >               self.assert_raises_fpe(underflow,
                                        lambda a, b: a/b, ft_tiny, ft_max)
    
    divbyzero  = ''
    fi         = finfo(resolution=1e-33, min=-1.189731495357231765085759326628007e+4932, max=1.189731495357231765085759326628007e+4932, dtype=float128)
    ft_eps     = (1.9259299443872358530559779425849273e-34+0j)
    ft_max     = (1.189731495357231765085759326628007e+4932+0j)
    ft_tiny    = (3.3621031431120935062626778173217526e-4932+0j)
    ftype      = <class 'numpy.clongdouble'>
    invalid    = 'invalid'
    overflow   = 'overflow'
    rtype      = <class 'numpy.longdouble'>
    self       = <numpy.core.tests.test_numeric.TestFloatExceptions object at 0x4df4f28fd0>
    typecode   = 'G'
    underflow  = ''
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_numeric.py:675: 
    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
    
    self = <numpy.core.tests.test_numeric.TestFloatExceptions object at 0x4df4f28fd0>
    fpeerr = ''
    flop = <function TestFloatExceptions.test_floating_exceptions.<locals>.<lambda> at 0x4e94b3a680>
    x = (3.3621031431120935062626778173217526e-4932+0j)
    y = (1.189731495357231765085759326628007e+4932+0j)
    
        def assert_raises_fpe(self, fpeerr, flop, x, y):
            ftype = type(x)
            try:
                flop(x, y)
    >           assert_(False,
                        "Type %s did not raise fpe error '%s'." % (ftype, fpeerr))
    E                   AssertionError: Type <class 'numpy.clongdouble'> did not raise fpe error ''.
    
    flop       = <function TestFloatExceptions.test_floating_exceptions.<locals>.<lambda> at 0x4e94b3a680>
    fpeerr     = ''
    ftype      = <class 'numpy.clongdouble'>
    self       = <numpy.core.tests.test_numeric.TestFloatExceptions object at 0x4df4f28fd0>
    x          = (3.3621031431120935062626778173217526e-4932+0j)
    y          = (1.189731495357231765085759326628007e+4932+0j)
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_numeric.py:626: AssertionError
    ______________ TestCommaDecimalPointLocale.test_locale_longdouble ______________
    
    self = <numpy.core.tests.test_print.TestCommaDecimalPointLocale object at 0x4e3b330b50>
    
        @pytest.mark.skipif(IS_MUSL,
                            reason="test flaky on musllinux")
        def test_locale_longdouble(self):
    >       assert_equal(str(np.longdouble('1.2')), str(float(1.2)))
    E       AssertionError: 
    E       Items are not equal:
    E        ACTUAL: '1.1999999999999999555910790149937384'
    E        DESIRED: '1.2'
    
    self       = <numpy.core.tests.test_print.TestCommaDecimalPointLocale object at 0x4e3b330b50>
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_print.py:202: AssertionError
    ____________________ TestRealScalars.test_dragon4_interface ____________________
    
    self = <numpy.core.tests.test_scalarprint.TestRealScalars object at 0x4ed1c51420>
    
        def test_dragon4_interface(self):
            tps = [np.float16, np.float32, np.float64]
            # test is flaky for musllinux on np.float128
            if hasattr(np, 'float128') and not IS_MUSL:
                tps.append(np.float128)
        
            fpos = np.format_float_positional
            fsci = np.format_float_scientific
        
            for tp in tps:
                # test padding
                assert_equal(fpos(tp('1.0'), pad_left=4, pad_right=4), "   1.    ")
                assert_equal(fpos(tp('-1.0'), pad_left=4, pad_right=4), "  -1.    ")
    >           assert_equal(fpos(tp('-10.2'),
                             pad_left=4, pad_right=4), " -10.2   ")
    E           AssertionError: 
    E           Items are not equal:
    E            ACTUAL: ' -10.199999999999999289457264239899814'
    E            DESIRED: ' -10.2   '
    
    fpos       = <function format_float_positional at 0x4e3a5f81f0>
    fsci       = <function format_float_scientific at 0x4e3a5f8160>
    self       = <numpy.core.tests.test_scalarprint.TestRealScalars object at 0x4ed1c51420>
    tp         = <class 'numpy.longdouble'>
    tps        = [<class 'numpy.float16'>, <class 'numpy.float32'>, <class 'numpy.float64'>, <class 'numpy.longdouble'>]
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_scalarprint.py:276: AssertionError
    __________________ TestRemainder.test_float_divmod_errors[g] ___________________
    
    self = <numpy.core.tests.test_umath.TestRemainder object at 0x4e22eeaa10>
    dtype = 'g'
    
        @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
        @pytest.mark.xfail(sys.platform.startswith("darwin"),
                reason="MacOS seems to not give the correct 'invalid' warning for "
                       "`fmod`.  Hopefully, others always do.")
        @pytest.mark.parametrize('dtype', np.typecodes['Float'])
        def test_float_divmod_errors(self, dtype):
            # Check valid errors raised for divmod and remainder
            fzero = np.array(0.0, dtype=dtype)
            fone = np.array(1.0, dtype=dtype)
            finf = np.array(np.inf, dtype=dtype)
            fnan = np.array(np.nan, dtype=dtype)
            # since divmod is combination of both remainder and divide
            # ops it will set both dividebyzero and invalid flags
            with np.errstate(divide='raise', invalid='ignore'):
    >           assert_raises(FloatingPointError, np.divmod, fone, fzero)
    
    dtype      = 'g'
    finf       = array(inf, dtype=float128)
    fnan       = array(nan, dtype=float128)
    fone       = array(1., dtype=float128)
    fzero      = array(0., dtype=float128)
    self       = <numpy.core.tests.test_umath.TestRemainder object at 0x4e22eeaa10>
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_umath.py:781: 
    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
    /usr/local/lib/python3.10/unittest/case.py:738: in assertRaises
        return context.handle('assertRaises', args, kwargs)
            args       = (<ufunc 'divmod'>, array(1., dtype=float128), array(0., dtype=float128))
            context    = None
            expected_exception = <class 'FloatingPointError'>
            kwargs     = {}
            self       = <numpy.testing._private.utils._Dummy testMethod=nop>
    /usr/local/lib/python3.10/unittest/case.py:200: in handle
        with self:
            args       = [array(1., dtype=float128), array(0., dtype=float128)]
            callable_obj = <ufunc 'divmod'>
            kwargs     = {}
            name       = 'assertRaises'
            self       = None
    /usr/local/lib/python3.10/unittest/case.py:223: in __exit__
        self._raiseFailure("{} not raised by {}".format(exc_name,
            exc_name   = 'FloatingPointError'
            exc_type   = None
            exc_value  = None
            self       = <unittest.case._AssertRaisesContext object at 0x4e46ed60b0>
            tb         = None
    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
    
    self = <unittest.case._AssertRaisesContext object at 0x4e46ed60b0>
    standardMsg = 'FloatingPointError not raised by divmod'
    
        def _raiseFailure(self, standardMsg):
            msg = self.test_case._formatMessage(self.msg, standardMsg)
    >       raise self.test_case.failureException(msg)
    E       AssertionError: FloatingPointError not raised by divmod
    
    msg        = 'FloatingPointError not raised by divmod'
    self       = <unittest.case._AssertRaisesContext object at 0x4e46ed60b0>
    standardMsg = 'FloatingPointError not raised by divmod'
    
    /usr/local/lib/python3.10/unittest/case.py:163: AssertionError
    ____________________ TestSpecialFloats.test_exp_exceptions _____________________
    
    self = <numpy.core.tests.test_umath.TestSpecialFloats object at 0x4e8061a560>
    
        @pytest.mark.xfail(
            _glibc_older_than("2.17"),
            reason="Older glibc versions may not raise appropriate FP exceptions"
        )
        def test_exp_exceptions(self):
            with np.errstate(over='raise'):
                assert_raises(FloatingPointError, np.exp, np.float16(11.0899))
                assert_raises(FloatingPointError, np.exp, np.float32(100.))
                assert_raises(FloatingPointError, np.exp, np.float32(1E19))
                assert_raises(FloatingPointError, np.exp, np.float64(800.))
                assert_raises(FloatingPointError, np.exp, np.float64(1E19))
        
            with np.errstate(under='raise'):
                assert_raises(FloatingPointError, np.exp, np.float16(-17.5))
    >           assert_raises(FloatingPointError, np.exp, np.float32(-1000.))
    
    self       = <numpy.core.tests.test_umath.TestSpecialFloats object at 0x4e8061a560>
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_umath.py:1431: 
    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
    /usr/local/lib/python3.10/unittest/case.py:738: in assertRaises
        return context.handle('assertRaises', args, kwargs)
            args       = (<ufunc 'exp'>, -1000.0)
            context    = None
            expected_exception = <class 'FloatingPointError'>
            kwargs     = {}
            self       = <numpy.testing._private.utils._Dummy testMethod=nop>
    /usr/local/lib/python3.10/unittest/case.py:200: in handle
        with self:
            args       = [-1000.0]
            callable_obj = <ufunc 'exp'>
            kwargs     = {}
            name       = 'assertRaises'
            self       = None
    /usr/local/lib/python3.10/unittest/case.py:223: in __exit__
        self._raiseFailure("{} not raised by {}".format(exc_name,
            exc_name   = 'FloatingPointError'
            exc_type   = None
            exc_value  = None
            self       = <unittest.case._AssertRaisesContext object at 0x4e3208dfc0>
            tb         = None
    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
    
    self = <unittest.case._AssertRaisesContext object at 0x4e3208dfc0>
    standardMsg = 'FloatingPointError not raised by exp'
    
        def _raiseFailure(self, standardMsg):
            msg = self.test_case._formatMessage(self.msg, standardMsg)
    >       raise self.test_case.failureException(msg)
    E       AssertionError: FloatingPointError not raised by exp
    
    msg        = 'FloatingPointError not raised by exp'
    self       = <unittest.case._AssertRaisesContext object at 0x4e3208dfc0>
    standardMsg = 'FloatingPointError not raised by exp'
    
    /usr/local/lib/python3.10/unittest/case.py:163: AssertionError
    ___________________ TestSpecialFloats.test_reciprocal_values ___________________
    
    self = <numpy.core.tests.test_umath.TestSpecialFloats object at 0x4e77faca90>
    
        @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
        def test_reciprocal_values(self):
            with np.errstate(all='ignore'):
                x = [np.nan,  np.nan, 0.0, -0.0, np.inf, -np.inf]
                y = [np.nan, -np.nan, np.inf, -np.inf, 0., -0.]
                for dt in ['e', 'f', 'd', 'g']:
                    xf = np.array(x, dtype=dt)
                    yf = np.array(y, dtype=dt)
                    assert_equal(np.reciprocal(yf), xf)
        
            with np.errstate(divide='raise'):
                for dt in ['e', 'f', 'd', 'g']:
    >               assert_raises(FloatingPointError, np.reciprocal,
                                  np.array(-0.0, dtype=dt))
    
    dt         = 'g'
    self       = <numpy.core.tests.test_umath.TestSpecialFloats object at 0x4e77faca90>
    x          = [nan, nan, 0.0, -0.0, inf, -inf]
    xf         = array([ nan,  nan,   0.,  -0.,  inf, -inf], dtype=float128)
    y          = [nan, nan, inf, -inf, 0.0, -0.0]
    yf         = array([ nan,  nan,  inf, -inf,   0.,  -0.], dtype=float128)
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_umath.py:1584: 
    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
    /usr/local/lib/python3.10/unittest/case.py:738: in assertRaises
        return context.handle('assertRaises', args, kwargs)
            args       = (<ufunc 'reciprocal'>, array(-0., dtype=float128))
            context    = None
            expected_exception = <class 'FloatingPointError'>
            kwargs     = {}
            self       = <numpy.testing._private.utils._Dummy testMethod=nop>
    /usr/local/lib/python3.10/unittest/case.py:200: in handle
        with self:
            args       = [array(-0., dtype=float128)]
            callable_obj = <ufunc 'reciprocal'>
            kwargs     = {}
            name       = 'assertRaises'
            self       = None
    /usr/local/lib/python3.10/unittest/case.py:223: in __exit__
        self._raiseFailure("{} not raised by {}".format(exc_name,
            exc_name   = 'FloatingPointError'
            exc_type   = None
            exc_value  = None
            self       = <unittest.case._AssertRaisesContext object at 0x4e46ed5810>
            tb         = None
    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
    
    self = <unittest.case._AssertRaisesContext object at 0x4e46ed5810>
    standardMsg = 'FloatingPointError not raised by reciprocal'
    
        def _raiseFailure(self, standardMsg):
            msg = self.test_case._formatMessage(self.msg, standardMsg)
    >       raise self.test_case.failureException(msg)
    E       AssertionError: FloatingPointError not raised by reciprocal
    
    msg        = 'FloatingPointError not raised by reciprocal'
    self       = <unittest.case._AssertRaisesContext object at 0x4e46ed5810>
    standardMsg = 'FloatingPointError not raised by reciprocal'
    
    /usr/local/lib/python3.10/unittest/case.py:163: AssertionError
    ______________________ TestAVXUfuncs.test_avx_based_ufunc ______________________
    
    self = <numpy.core.tests.test_umath.TestAVXUfuncs object at 0x4eca6061a0>
    
        def test_avx_based_ufunc(self):
            strides = np.array([-4,-3,-2,-1,1,2,3,4])
            np.random.seed(42)
            for func, prop in avx_ufuncs.items():
                maxulperr = prop[0]
                minval = prop[1]
                maxval = prop[2]
                # various array sizes to ensure masking in AVX is tested
                for size in range(1,32):
                    myfunc = getattr(np, func)
                    x_f32 = np.float32(np.random.uniform(low=minval, high=maxval,
                        size=size))
                    x_f64 = np.float64(x_f32)
                    x_f128 = np.longdouble(x_f32)
                    y_true128 = myfunc(x_f128)
                    if maxulperr == 0:
    >                   assert_equal(myfunc(x_f32), np.float32(y_true128))
    
    func       = 'trunc'
    jj         = 4
    maxulperr  = 0
    maxval     = 100.0
    minval     = -100.0
    myfunc     = <ufunc 'trunc'>
    prop       = [0, -100.0, 100.0]
    self       = <numpy.core.tests.test_umath.TestAVXUfuncs object at 0x4eca6061a0>
    size       = 1
    strides    = array([-4, -3, -2, -1,  1,  2,  3,  4])
    x_f128     = array([21.93948555], dtype=float128)
    x_f32      = array([21.939486], dtype=float32)
    x_f64      = 21.939485549926758
    y_true128  = array([21.5], dtype=float128)
    y_true32   = array([  6., -57., 100.,  97.,  30.,  61.,  44.,  19., -89.,  -9.,  35.,
            36., -25.,  89., -66.,   1.,  39.,  40.,  30., -44., -68.,  28.,
            20., -64.,  42.,  -8.,  34.,  68., -66., -96.,  56.],
          dtype=float32)
    y_true64   = array([  6., -57., 100.,  97.,  30.,  61.,  44.,  19., -89.,  -9.,  35.,
            36., -25.,  89., -66.,   1.,  39.,  40.,  30., -44., -68.,  28.,
            20., -64.,  42.,  -8.,  34.,  68., -66., -96.,  56.])
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_umath.py:1939: 
    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
    
    args = (<built-in function eq>, array([21.], dtype=float32), array([21.5], dtype=float32))
    kwds = {'err_msg': '', 'header': 'Arrays are not equal', 'strict': False, 'verbose': True}
    
        @wraps(func)
        def inner(*args, **kwds):
            with self._recreate_cm():
    >           return func(*args, **kwds)
    E           AssertionError: 
    E           Arrays are not equal
    E           
    E           Mismatched elements: 1 / 1 (100%)
    E           Max absolute difference: 0.5
    E           Max relative difference: 0.02325581
    E            x: array([21.], dtype=float32)
    E            y: array([21.5], dtype=float32)
    
    args       = (<built-in function eq>, array([21.], dtype=float32), array([21.5], dtype=float32))
    func       = <function assert_array_compare at 0x4e5549c160>
    kwds       = {'err_msg': '', 'header': 'Arrays are not equal', 'strict': False, 'verbose': True}
    self       = <contextlib._GeneratorContextManager object at 0x4e55469f60>
    
    /usr/local/lib/python3.10/contextlib.py:79: AssertionError
    _______________ TestAVXFloat32Transcendental.test_sincos_float32 _______________
    
    self = <numpy.core.tests.test_umath.TestAVXFloat32Transcendental object at 0x4eca605840>
    
        def test_sincos_float32(self):
            np.random.seed(42)
            N = 1000000
            M = np.int_(N/20)
            index = np.random.randint(low=0, high=N, size=M)
            x_f32 = np.float32(np.random.uniform(low=-100.,high=100.,size=N))
            if not _glibc_older_than("2.17"):
                # test coverage for elements > 117435.992f for which glibc is used
                # this is known to be problematic on old glibc, so skip it there
                x_f32[index] = np.float32(10E+10*np.random.rand(M))
            x_f64 = np.float64(x_f32)
    >       assert_array_max_ulp(np.sin(x_f32), np.float32(np.sin(x_f64)), maxulp=2)
    E       AssertionError: Arrays are not almost equal up to 2 ULP (max difference is 67 ULP)
    
    M          = 50000
    N          = 1000000
    index      = array([121958, 671155, 131932, ..., 738271, 310195, 233966])
    self       = <numpy.core.tests.test_umath.TestAVXFloat32Transcendental object at 0x4eca605840>
    x_f32      = array([-10.577719, -35.353283, -97.29114 , ..., -80.99214 , -42.875526,
           -87.8052  ], dtype=float32)
    x_f64      = array([-10.57771873, -35.35328293, -97.2911377 , ..., -80.99214172,
           -42.87552643, -87.80519867])
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_umath.py:1978: AssertionError
    ____________________ TestComplexFunctions.test_branch_cuts _____________________
    
    self = <numpy.core.tests.test_umath.TestComplexFunctions object at 0x4eca685b70>
    
        @pytest.mark.xfail(IS_MUSL, reason="gh23049")
        @pytest.mark.xfail(IS_WASM, reason="doesn't work")
        def test_branch_cuts(self):
            # check branch cuts and continuity on them
            _check_branch_cut(np.log,   -0.5, 1j, 1, -1, True)
            _check_branch_cut(np.log2,  -0.5, 1j, 1, -1, True)
            _check_branch_cut(np.log10, -0.5, 1j, 1, -1, True)
            _check_branch_cut(np.log1p, -1.5, 1j, 1, -1, True)
            _check_branch_cut(np.sqrt,  -0.5, 1j, 1, -1, True)
        
            _check_branch_cut(np.arcsin, [ -2, 2],   [1j, 1j], 1, -1, True)
            _check_branch_cut(np.arccos, [ -2, 2],   [1j, 1j], 1, -1, True)
    >       _check_branch_cut(np.arctan, [0-2j, 2j],  [1,  1], -1, 1, True)
    
    self       = <numpy.core.tests.test_umath.TestComplexFunctions object at 0x4eca685b70>
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_umath.py:4115: 
    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
    
    f = <ufunc 'arctan'>, x0 = array([0.-2.j, 0.+2.j]), dx = array([1.+0.j, 1.+0.j])
    re_sign = -1, im_sign = 1, sig_zero_ok = True, dtype = <class 'complex'>
    
        def _check_branch_cut(f, x0, dx, re_sign=1, im_sign=-1, sig_zero_ok=False,
                              dtype=complex):
            """
            Check for a branch cut in a function.
        
            Assert that `x0` lies on a branch cut of function `f` and `f` is
            continuous from the direction `dx`.
        
            Parameters
            ----------
            f : func
                Function to check
            x0 : array-like
                Point on branch cut
            dx : array-like
                Direction to check continuity in
            re_sign, im_sign : {1, -1}
                Change of sign of the real or imaginary part expected
            sig_zero_ok : bool
                Whether to check if the branch cut respects signed zero (if applicable)
            dtype : dtype
                Dtype to check (should be complex)
        
            """
            x0 = np.atleast_1d(x0).astype(dtype)
            dx = np.atleast_1d(dx).astype(dtype)
        
            if np.dtype(dtype).char == 'F':
                scale = np.finfo(dtype).eps * 1e2
                atol = np.float32(1e-2)
            else:
                scale = np.finfo(dtype).eps * 1e3
                atol = 1e-4
        
            y0 = f(x0)
            yp = f(x0 + dx*scale*np.absolute(x0)/np.absolute(dx))
            ym = f(x0 - dx*scale*np.absolute(x0)/np.absolute(dx))
        
    >       assert_(np.all(np.absolute(y0.real - yp.real) < atol), (y0, yp))
    E       AssertionError: (array([-1.57079633e+000-5.49306144e-001j,
    E               1.00000000e+308+1.00000000e+308j]), array([1.57079633-0.54930614j, 1.57079633+0.54930614j]))
    
    atol       = 0.0001
    dtype      = <class 'complex'>
    dx         = array([1.+0.j, 1.+0.j])
    f          = <ufunc 'arctan'>
    im_sign    = 1
    re_sign    = -1
    scale      = 2.220446049250313e-13
    sig_zero_ok = True
    x0         = array([0.-2.j, 0.+2.j])
    y0         = array([-1.57079633e+000-5.49306144e-001j,
            1.00000000e+308+1.00000000e+308j])
    ym         = array([-1.57079633-0.54930614j, -1.57079633+0.54930614j])
    yp         = array([1.57079633-0.54930614j, 1.57079633+0.54930614j])
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_umath.py:4373: AssertionError
    _______________ TestComplexFunctions.test_branch_cuts_complex64 ________________
    
    self = <numpy.core.tests.test_umath.TestComplexFunctions object at 0x4eca685d80>
    
        @pytest.mark.xfail(IS_MUSL, reason="gh23049")
        @pytest.mark.xfail(IS_WASM, reason="doesn't work")
        def test_branch_cuts_complex64(self):
            # check branch cuts and continuity on them
            _check_branch_cut(np.log,   -0.5, 1j, 1, -1, True, np.complex64)
            _check_branch_cut(np.log2,  -0.5, 1j, 1, -1, True, np.complex64)
            _check_branch_cut(np.log10, -0.5, 1j, 1, -1, True, np.complex64)
            _check_branch_cut(np.log1p, -1.5, 1j, 1, -1, True, np.complex64)
            _check_branch_cut(np.sqrt,  -0.5, 1j, 1, -1, True, np.complex64)
        
            _check_branch_cut(np.arcsin, [ -2, 2],   [1j, 1j], 1, -1, True, np.complex64)
            _check_branch_cut(np.arccos, [ -2, 2],   [1j, 1j], 1, -1, True, np.complex64)
    >       _check_branch_cut(np.arctan, [0-2j, 2j],  [1,  1], -1, 1, True, np.complex64)
    
    self       = <numpy.core.tests.test_umath.TestComplexFunctions object at 0x4eca685d80>
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_umath.py:4142: 
    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
    
    f = <ufunc 'arctan'>, x0 = array([0.-2.j, 0.+2.j], dtype=complex64)
    dx = array([1.+0.j, 1.+0.j], dtype=complex64), re_sign = -1, im_sign = 1
    sig_zero_ok = True, dtype = <class 'numpy.complex64'>
    
        def _check_branch_cut(f, x0, dx, re_sign=1, im_sign=-1, sig_zero_ok=False,
                              dtype=complex):
            """
            Check for a branch cut in a function.
        
            Assert that `x0` lies on a branch cut of function `f` and `f` is
            continuous from the direction `dx`.
        
            Parameters
            ----------
            f : func
                Function to check
            x0 : array-like
                Point on branch cut
            dx : array-like
                Direction to check continuity in
            re_sign, im_sign : {1, -1}
                Change of sign of the real or imaginary part expected
            sig_zero_ok : bool
                Whether to check if the branch cut respects signed zero (if applicable)
            dtype : dtype
                Dtype to check (should be complex)
        
            """
            x0 = np.atleast_1d(x0).astype(dtype)
            dx = np.atleast_1d(dx).astype(dtype)
        
            if np.dtype(dtype).char == 'F':
                scale = np.finfo(dtype).eps * 1e2
                atol = np.float32(1e-2)
            else:
                scale = np.finfo(dtype).eps * 1e3
                atol = 1e-4
        
            y0 = f(x0)
            yp = f(x0 + dx*scale*np.absolute(x0)/np.absolute(dx))
            ym = f(x0 - dx*scale*np.absolute(x0)/np.absolute(dx))
        
    >       assert_(np.all(np.absolute(y0.real - yp.real) < atol), (y0, yp))
    E       AssertionError: (array([-1.5707964e+00-5.4930615e-01j,  9.9999997e+37+9.9999997e+37j],
    E             dtype=complex64), array([1.5707884-0.54930615j, 1.5707884+0.54930615j], dtype=complex64))
    
    atol       = 0.01
    dtype      = <class 'numpy.complex64'>
    dx         = array([1.+0.j, 1.+0.j], dtype=complex64)
    f          = <ufunc 'arctan'>
    im_sign    = 1
    re_sign    = -1
    scale      = 1.1920928955078125e-05
    sig_zero_ok = True
    x0         = array([0.-2.j, 0.+2.j], dtype=complex64)
    y0         = array([-1.5707964e+00-5.4930615e-01j,  9.9999997e+37+9.9999997e+37j],
          dtype=complex64)
    ym         = array([-1.5707884-0.54930615j, -1.5707884+0.54930615j], dtype=complex64)
    yp         = array([1.5707884-0.54930615j, 1.5707884+0.54930615j], dtype=complex64)
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_umath.py:4373: AssertionError
    ____________ TestComplexFunctions.test_loss_of_precision[complex64] ____________
    
    self = <numpy.core.tests.test_umath.TestComplexFunctions object at 0x4eca6862c0>
    dtype = <class 'numpy.complex64'>
    
        @pytest.mark.xfail(IS_MUSL, reason="gh23049")
        @pytest.mark.xfail(IS_WASM, reason="doesn't work")
        @pytest.mark.parametrize('dtype', [np.complex64, np.complex_, np.longcomplex])
        def test_loss_of_precision(self, dtype):
            """Check loss of precision in complex arc* functions"""
        
            # Check against known-good functions
        
            info = np.finfo(dtype)
            real_dtype = dtype(0.).real.dtype
            eps = info.eps
        
            def check(x, rtol):
                x = x.astype(real_dtype)
        
                z = x.astype(dtype)
                d = np.absolute(np.arcsinh(x)/np.arcsinh(z).real - 1)
                assert_(np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(),
                                          'arcsinh'))
        
                z = (1j*x).astype(dtype)
                d = np.absolute(np.arcsinh(x)/np.arcsin(z).imag - 1)
                assert_(np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(),
                                          'arcsin'))
        
                z = x.astype(dtype)
                d = np.absolute(np.arctanh(x)/np.arctanh(z).real - 1)
                assert_(np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(),
                                          'arctanh'))
        
                z = (1j*x).astype(dtype)
                d = np.absolute(np.arctanh(x)/np.arctan(z).imag - 1)
                assert_(np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(),
                                          'arctan'))
        
            # The switchover was chosen as 1e-3; hence there can be up to
            # ~eps/1e-3 of relative cancellation error before it
        
            x_series = np.logspace(-20, -3.001, 200)
            x_basic = np.logspace(-2.999, 0, 10, endpoint=False)
        
            if dtype is np.longcomplex:
                if bad_arcsinh():
                    pytest.skip("Trig functions of np.longcomplex values known "
                                "to be inaccurate on aarch64 and PPC for some "
                                "compilation configurations.")
                # It's not guaranteed that the system-provided arc functions
                # are accurate down to a few epsilons. (Eg. on Linux 64-bit)
                # So, give more leeway for long complex tests here:
                check(x_series, 50.0*eps)
            else:
    >           check(x_series, 2.1*eps)
    
    check      = <function TestComplexFunctions.test_loss_of_precision.<locals>.check at 0x4e45301cf0>
    dtype      = <class 'numpy.complex64'>
    eps        = 1.1920929e-07
    info       = finfo(resolution=1e-06, min=-3.4028235e+38, max=3.4028235e+38, dtype=float32)
    real_dtype = dtype('float32')
    self       = <numpy.core.tests.test_umath.TestComplexFunctions object at 0x4eca6862c0>
    x_basic    = array([0.00100231, 0.0019994 , 0.00398841, 0.0079561 , 0.01587084,
           0.0316592 , 0.06315387, 0.12597953, 0.25130435, 0.50130265])
    x_series   = array([1.00000000e-20, 1.21736864e-20, 1.48198641e-20, 1.80412378e-20,
           2.19628372e-20, 2.67368693e-20, 3.254862...3.06526013e-04, 3.73155156e-04, 4.54267386e-04,
           5.53010871e-04, 6.73218092e-04, 8.19554595e-04, 9.97700064e-04])
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_umath.py:4227: 
    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
    
    x = array([9.99999968e-21, 1.21736865e-20, 1.48198648e-20, 1.80412373e-20,
           2.19628376e-20, 2.67368701e-20, 3.254862...55170e-04, 4.54267400e-04,
           5.53010846e-04, 6.73218106e-04, 8.19554611e-04, 9.97700030e-04],
          dtype=float32)
    rtol = 2.5033950805664064e-07
    
        def check(x, rtol):
            x = x.astype(real_dtype)
        
            z = x.astype(dtype)
            d = np.absolute(np.arcsinh(x)/np.arcsinh(z).real - 1)
    >       assert_(np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(),
                                      'arcsinh'))
    E       AssertionError: (0, 1e-20, inf, 'arcsinh')
    
    d          = array([           inf,            inf,            inf,            inf,
                      inf,            inf,         ...17506e-04, 8.02278519e-05,
           6.28232956e-05, 6.73532486e-06, 1.53779984e-05, 4.31537628e-05],
          dtype=float32)
    dtype      = <class 'numpy.complex64'>
    real_dtype = dtype('float32')
    rtol       = 2.5033950805664064e-07
    x          = array([9.99999968e-21, 1.21736865e-20, 1.48198648e-20, 1.80412373e-20,
           2.19628376e-20, 2.67368701e-20, 3.254862...55170e-04, 4.54267400e-04,
           5.53010846e-04, 6.73218106e-04, 8.19554611e-04, 9.97700030e-04],
          dtype=float32)
    z          = array([9.99999968e-21+0.j, 1.21736865e-20+0.j, 1.48198648e-20+0.j,
           1.80412373e-20+0.j, 2.19628376e-20+0.j, 2.67...67400e-04+0.j, 5.53010846e-04+0.j, 6.73218106e-04+0.j,
           8.19554611e-04+0.j, 9.97700030e-04+0.j], dtype=complex64)
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_umath.py:4193: AssertionError
    ___________ TestComplexFunctions.test_loss_of_precision[complex128] ____________
    
    self = <numpy.core.tests.test_umath.TestComplexFunctions object at 0x4eca686350>
    dtype = <class 'numpy.complex128'>
    
        @pytest.mark.xfail(IS_MUSL, reason="gh23049")
        @pytest.mark.xfail(IS_WASM, reason="doesn't work")
        @pytest.mark.parametrize('dtype', [np.complex64, np.complex_, np.longcomplex])
        def test_loss_of_precision(self, dtype):
            """Check loss of precision in complex arc* functions"""
        
            # Check against known-good functions
        
            info = np.finfo(dtype)
            real_dtype = dtype(0.).real.dtype
            eps = info.eps
        
            def check(x, rtol):
                x = x.astype(real_dtype)
        
                z = x.astype(dtype)
                d = np.absolute(np.arcsinh(x)/np.arcsinh(z).real - 1)
                assert_(np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(),
                                          'arcsinh'))
        
                z = (1j*x).astype(dtype)
                d = np.absolute(np.arcsinh(x)/np.arcsin(z).imag - 1)
                assert_(np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(),
                                          'arcsin'))
        
                z = x.astype(dtype)
                d = np.absolute(np.arctanh(x)/np.arctanh(z).real - 1)
                assert_(np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(),
                                          'arctanh'))
        
                z = (1j*x).astype(dtype)
                d = np.absolute(np.arctanh(x)/np.arctan(z).imag - 1)
                assert_(np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(),
                                          'arctan'))
        
            # The switchover was chosen as 1e-3; hence there can be up to
            # ~eps/1e-3 of relative cancellation error before it
        
            x_series = np.logspace(-20, -3.001, 200)
            x_basic = np.logspace(-2.999, 0, 10, endpoint=False)
        
            if dtype is np.longcomplex:
                if bad_arcsinh():
                    pytest.skip("Trig functions of np.longcomplex values known "
                                "to be inaccurate on aarch64 and PPC for some "
                                "compilation configurations.")
                # It's not guaranteed that the system-provided arc functions
                # are accurate down to a few epsilons. (Eg. on Linux 64-bit)
                # So, give more leeway for long complex tests here:
                check(x_series, 50.0*eps)
            else:
    >           check(x_series, 2.1*eps)
    
    check      = <function TestComplexFunctions.test_loss_of_precision.<locals>.check at 0x4df2023d90>
    dtype      = <class 'numpy.complex128'>
    eps        = 2.220446049250313e-16
    info       = finfo(resolution=1e-15, min=-1.7976931348623157e+308, max=1.7976931348623157e+308, dtype=float64)
    real_dtype = dtype('float64')
    self       = <numpy.core.tests.test_umath.TestComplexFunctions object at 0x4eca686350>
    x_basic    = array([0.00100231, 0.0019994 , 0.00398841, 0.0079561 , 0.01587084,
           0.0316592 , 0.06315387, 0.12597953, 0.25130435, 0.50130265])
    x_series   = array([1.00000000e-20, 1.21736864e-20, 1.48198641e-20, 1.80412378e-20,
           2.19628372e-20, 2.67368693e-20, 3.254862...3.06526013e-04, 3.73155156e-04, 4.54267386e-04,
           5.53010871e-04, 6.73218092e-04, 8.19554595e-04, 9.97700064e-04])
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_umath.py:4227: 
    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
    
    x = array([1.00000000e-20, 1.21736864e-20, 1.48198641e-20, 1.80412378e-20,
           2.19628372e-20, 2.67368693e-20, 3.254862...3.06526013e-04, 3.73155156e-04, 4.54267386e-04,
           5.53010871e-04, 6.73218092e-04, 8.19554595e-04, 9.97700064e-04])
    rtol = 4.662936703425658e-16
    
        def check(x, rtol):
            x = x.astype(real_dtype)
        
            z = x.astype(dtype)
            d = np.absolute(np.arcsinh(x)/np.arcsinh(z).real - 1)
    >       assert_(np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(),
                                      'arcsinh'))
    E       AssertionError: (0, 1.0000000000000001e-20, inf, 'arcsinh')
    
    d          = array([           inf,            inf,            inf,            inf,
                      inf,            inf,         ...1.10356169e-13, 5.87307980e-14, 9.10382880e-14,
           9.85878046e-14, 1.76303416e-13, 2.36699549e-13, 5.06261699e-14])
    dtype      = <class 'numpy.complex128'>
    real_dtype = dtype('float64')
    rtol       = 4.662936703425658e-16
    x          = array([1.00000000e-20, 1.21736864e-20, 1.48198641e-20, 1.80412378e-20,
           2.19628372e-20, 2.67368693e-20, 3.254862...3.06526013e-04, 3.73155156e-04, 4.54267386e-04,
           5.53010871e-04, 6.73218092e-04, 8.19554595e-04, 9.97700064e-04])
    z          = array([1.00000000e-20+0.j, 1.21736864e-20+0.j, 1.48198641e-20+0.j,
           1.80412378e-20+0.j, 2.19628372e-20+0.j, 2.67...0.j,
           4.54267386e-04+0.j, 5.53010871e-04+0.j, 6.73218092e-04+0.j,
           8.19554595e-04+0.j, 9.97700064e-04+0.j])
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_umath.py:4193: AssertionError
    ___________ TestComplexFunctions.test_loss_of_precision[clongdouble] ___________
    
    self = <numpy.core.tests.test_umath.TestComplexFunctions object at 0x4eca6863e0>
    dtype = <class 'numpy.clongdouble'>
    
        @pytest.mark.xfail(IS_MUSL, reason="gh23049")
        @pytest.mark.xfail(IS_WASM, reason="doesn't work")
        @pytest.mark.parametrize('dtype', [np.complex64, np.complex_, np.longcomplex])
        def test_loss_of_precision(self, dtype):
            """Check loss of precision in complex arc* functions"""
        
            # Check against known-good functions
        
            info = np.finfo(dtype)
            real_dtype = dtype(0.).real.dtype
            eps = info.eps
        
            def check(x, rtol):
                x = x.astype(real_dtype)
        
                z = x.astype(dtype)
                d = np.absolute(np.arcsinh(x)/np.arcsinh(z).real - 1)
                assert_(np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(),
                                          'arcsinh'))
        
                z = (1j*x).astype(dtype)
                d = np.absolute(np.arcsinh(x)/np.arcsin(z).imag - 1)
                assert_(np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(),
                                          'arcsin'))
        
                z = x.astype(dtype)
                d = np.absolute(np.arctanh(x)/np.arctanh(z).real - 1)
                assert_(np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(),
                                          'arctanh'))
        
                z = (1j*x).astype(dtype)
                d = np.absolute(np.arctanh(x)/np.arctan(z).imag - 1)
                assert_(np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(),
                                          'arctan'))
        
            # The switchover was chosen as 1e-3; hence there can be up to
            # ~eps/1e-3 of relative cancellation error before it
        
            x_series = np.logspace(-20, -3.001, 200)
            x_basic = np.logspace(-2.999, 0, 10, endpoint=False)
        
            if dtype is np.longcomplex:
                if bad_arcsinh():
                    pytest.skip("Trig functions of np.longcomplex values known "
                                "to be inaccurate on aarch64 and PPC for some "
                                "compilation configurations.")
                # It's not guaranteed that the system-provided arc functions
                # are accurate down to a few epsilons. (Eg. on Linux 64-bit)
                # So, give more leeway for long complex tests here:
    >           check(x_series, 50.0*eps)
    
    check      = <function TestComplexFunctions.test_loss_of_precision.<locals>.check at 0x4df2023010>
    dtype      = <class 'numpy.clongdouble'>
    eps        = 1.9259299443872358530559779425849273e-34
    info       = finfo(resolution=1e-33, min=-1.189731495357231765085759326628007e+4932, max=1.189731495357231765085759326628007e+4932, dtype=float128)
    real_dtype = dtype('float128')
    self       = <numpy.core.tests.test_umath.TestComplexFunctions object at 0x4eca6863e0>
    x_basic    = array([0.00100231, 0.0019994 , 0.00398841, 0.0079561 , 0.01587084,
           0.0316592 , 0.06315387, 0.12597953, 0.25130435, 0.50130265])
    x_series   = array([1.00000000e-20, 1.21736864e-20, 1.48198641e-20, 1.80412378e-20,
           2.19628372e-20, 2.67368693e-20, 3.254862...3.06526013e-04, 3.73155156e-04, 4.54267386e-04,
           5.53010871e-04, 6.73218092e-04, 8.19554595e-04, 9.97700064e-04])
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_umath.py:4225: 
    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
    
    x = array([1.00000000e-20, 1.21736864e-20, 1.48198641e-20, 1.80412378e-20,
           2.19628372e-20, 2.67368693e-20, 3.254862...5156e-04, 4.54267386e-04,
           5.53010871e-04, 6.73218092e-04, 8.19554595e-04, 9.97700064e-04],
          dtype=float128)
    rtol = 9.629649721936179265279889712924637e-33
    
        def check(x, rtol):
            x = x.astype(real_dtype)
        
            z = x.astype(dtype)
            d = np.absolute(np.arcsinh(x)/np.arcsinh(z).real - 1)
            assert_(np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(),
                                      'arcsinh'))
        
            z = (1j*x).astype(dtype)
            d = np.absolute(np.arcsinh(x)/np.arcsin(z).imag - 1)
            assert_(np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(),
                                      'arcsin'))
        
            z = x.astype(dtype)
            d = np.absolute(np.arctanh(x)/np.arctanh(z).real - 1)
    >       assert_(np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(),
                                      'arctanh'))
    E       AssertionError: (3, 1.804123782950424397342721546230589e-20, 1.834756032787153018756083106390377e-15, 'arctanh')
    
    d          = array([6.01873108e-16, 7.41558465e-16, 1.82747631e-15, 1.83475603e-15,
           1.09608605e-15, 1.68832081e-15, 1.294427...6448e-32, 2.61926472e-32,
           3.41852565e-32, 2.29185663e-32, 4.56445397e-32, 2.25333803e-32],
          dtype=float128)
    dtype      = <class 'numpy.clongdouble'>
    real_dtype = dtype('float128')
    rtol       = 9.629649721936179265279889712924637e-33
    x          = array([1.00000000e-20, 1.21736864e-20, 1.48198641e-20, 1.80412378e-20,
           2.19628372e-20, 2.67368693e-20, 3.254862...5156e-04, 4.54267386e-04,
           5.53010871e-04, 6.73218092e-04, 8.19554595e-04, 9.97700064e-04],
          dtype=float128)
    z          = array([1.00000000e-20+0.j, 1.21736864e-20+0.j, 1.48198641e-20+0.j,
           1.80412378e-20+0.j, 2.19628372e-20+0.j, 2.67...7386e-04+0.j, 5.53010871e-04+0.j, 6.73218092e-04+0.j,
           8.19554595e-04+0.j, 9.97700064e-04+0.j], dtype=complex256)
    
    /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_umath.py:4203: AssertionError
    __________________________ TestExecCommand.test_basic __________________________
    
    self = <numpy.distutils.tests.test_exec_command.TestExecCommand object at 0x4eb42e7ca0>
    
        def test_basic(self):
            with redirect_stdout(StringIO()):
                with redirect_stderr(StringIO()):
                    with assert_warns(DeprecationWarning):
                        if os.name == "posix":
    >                       self.check_posix(use_tee=0)
    
    self       = <numpy.distutils.tests.test_exec_command.TestExecCommand object at 0x4eb42e7ca0>
    
    /usr/local/lib/python3.10/site-packages/numpy/distutils/tests/test_exec_command.py:211: 
    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
    
    self = <numpy.distutils.tests.test_exec_command.TestExecCommand object at 0x4eb42e7ca0>
    kws = {'use_tee': 0}, s = 1, o = 'This account is currently not available.'
    
        def check_posix(self, **kws):
            s, o = exec_command.exec_command("echo Hello", **kws)
    >       assert_(s == 0)
    E       AssertionError
    
    kws        = {'use_tee': 0}
    o          = 'This account is currently not available.'
    s          = 1
    self       = <numpy.distutils.tests.test_exec_command.TestExecCommand object at 0x4eb42e7ca0>
    
    /usr/local/lib/python3.10/site-packages/numpy/distutils/tests/test_exec_command.py:115: AssertionError
    ____________________ TestFReturnCharacter.test_all_f77[t1] _____________________
    
    self = <numpy.f2py.tests.test_return_character.TestFReturnCharacter object at 0x4eb74a1fc0>
    name = 't1'
    
        @pytest.mark.xfail(IS_S390X, reason="callback returns ' '")
        @pytest.mark.parametrize("name", "t0,t1,t5,s0,s1,s5,ss".split(","))
        def test_all_f77(self, name):
    >       self.check_function(getattr(self.module, name), name)
    
    name       = 't1'
    self       = <numpy.f2py.tests.test_return_character.TestFReturnCharacter object at 0x4eb74a1fc0>
    
    /usr/local/lib/python3.10/site-packages/numpy/f2py/tests/test_return_character.py:40: 
    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
    
    self = <numpy.f2py.tests.test_return_character.TestFReturnCharacter object at 0x4eb74a1fc0>
    t = <fortran t1>, tname = 't1'
    
        def check_function(self, t, tname):
            if tname in ["t0", "t1", "s0", "s1"]:
                assert t("23") == b"2"
                r = t("ab")
                assert r == b"a"
                r = t(array("ab"))
    >           assert r == b"a"
    E           AssertionError: assert b'' == b'a'
    E             Use -v to get more diff
    
    r          = b''
    self       = <numpy.f2py.tests.test_return_character.TestFReturnCharacter object at 0x4eb74a1fc0>
    t          = <fortran t1>
    tname      = 't1'
    
    /usr/local/lib/python3.10/site-packages/numpy/f2py/tests/test_return_character.py:17: AssertionError
    ____________________ TestFReturnCharacter.test_all_f77[s1] _____________________
    
    self = <numpy.f2py.tests.test_return_character.TestFReturnCharacter object at 0x4eb74a1990>
    name = 's1'
    
        @pytest.mark.xfail(IS_S390X, reason="callback returns ' '")
        @pytest.mark.parametrize("name", "t0,t1,t5,s0,s1,s5,ss".split(","))
        def test_all_f77(self, name):
    >       self.check_function(getattr(self.module, name), name)
    
    name       = 's1'
    self       = <numpy.f2py.tests.test_return_character.TestFReturnCharacter object at 0x4eb74a1990>
    
    /usr/local/lib/python3.10/site-packages/numpy/f2py/tests/test_return_character.py:40: 
    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
    
    self = <numpy.f2py.tests.test_return_character.TestFReturnCharacter object at 0x4eb74a1990>
    t = <fortran function s1>, tname = 's1'
    
        def check_function(self, t, tname):
            if tname in ["t0", "t1", "s0", "s1"]:
                assert t("23") == b"2"
                r = t("ab")
                assert r == b"a"
                r = t(array("ab"))
    >           assert r == b"a"
    E           AssertionError: assert b'' == b'a'
    E             Use -v to get more diff
    
    r          = b''
    self       = <numpy.f2py.tests.test_return_character.TestFReturnCharacter object at 0x4eb74a1990>
    t          = <fortran function s1>
    tname      = 's1'
    
    /usr/local/lib/python3.10/site-packages/numpy/f2py/tests/test_return_character.py:17: AssertionError
    ____________________ TestFReturnCharacter.test_all_f90[t1] _____________________
    
    self = <numpy.f2py.tests.test_return_character.TestFReturnCharacter object at 0x4eb74a3dc0>
    name = 't1'
    
        @pytest.mark.xfail(IS_S390X, reason="callback returns ' '")
        @pytest.mark.parametrize("name", "t0,t1,t5,ts,s0,s1,s5,ss".split(","))
        def test_all_f90(self, name):
    >       self.check_function(getattr(self.module.f90_return_char, name), name)
    
    name       = 't1'
    self       = <numpy.f2py.tests.test_return_character.TestFReturnCharacter object at 0x4eb74a3dc0>
    
    /usr/local/lib/python3.10/site-packages/numpy/f2py/tests/test_return_character.py:45: 
    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
    
    self = <numpy.f2py.tests.test_return_character.TestFReturnCharacter object at 0x4eb74a3dc0>
    t = <fortran function t1>, tname = 't1'
    
        def check_function(self, t, tname):
            if tname in ["t0", "t1", "s0", "s1"]:
                assert t("23") == b"2"
                r = t("ab")
                assert r == b"a"
                r = t(array("ab"))
    >           assert r == b"a"
    E           AssertionError: assert b'' == b'a'
    E             Use -v to get more diff
    
    r          = b''
    self       = <numpy.f2py.tests.test_return_character.TestFReturnCharacter object at 0x4eb74a3dc0>
    t          = <fortran function t1>
    tname      = 't1'
    
    /usr/local/lib/python3.10/site-packages/numpy/f2py/tests/test_return_character.py:17: AssertionError
    ____________________ TestFReturnCharacter.test_all_f90[s1] _____________________
    
    self = <numpy.f2py.tests.test_return_character.TestFReturnCharacter object at 0x4eb74a3fa0>
    name = 's1'
    
        @pytest.mark.xfail(IS_S390X, reason="callback returns ' '")
        @pytest.mark.parametrize("name", "t0,t1,t5,ts,s0,s1,s5,ss".split(","))
        def test_all_f90(self, name):
    >       self.check_function(getattr(self.module.f90_return_char, name), name)
    
    name       = 's1'
    self       = <numpy.f2py.tests.test_return_character.TestFReturnCharacter object at 0x4eb74a3fa0>
    
    /usr/local/lib/python3.10/site-packages/numpy/f2py/tests/test_return_character.py:45: 
    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
    
    self = <numpy.f2py.tests.test_return_character.TestFReturnCharacter object at 0x4eb74a3fa0>
    t = <fortran function s1>, tname = 's1'
    
        def check_function(self, t, tname):
            if tname in ["t0", "t1", "s0", "s1"]:
                assert t("23") == b"2"
                r = t("ab")
                assert r == b"a"
                r = t(array("ab"))
    >           assert r == b"a"
    E           AssertionError: assert b'' == b'a'
    E             Use -v to get more diff
    
    r          = b''
    self       = <numpy.f2py.tests.test_return_character.TestFReturnCharacter object at 0x4eb74a3fa0>
    t          = <fortran function s1>
    tname      = 's1'
    
    /usr/local/lib/python3.10/site-packages/numpy/f2py/tests/test_return_character.py:17: AssertionError
    =============================== warnings summary ===============================
    ../../../local/lib/python3.10/site-packages/setuptools/_distutils/msvccompiler.py:66
      /usr/local/lib/python3.10/site-packages/setuptools/_distutils/msvccompiler.py:66: DeprecationWarning: msvccompiler is deprecated and slated to be removed in the future. Please discontinue use or file an issue with pypa/distutils describing your use case.
        warnings.warn(
    
    ../../../local/lib/python3.10/site-packages/setuptools/sandbox.py:13
      /usr/local/lib/python3.10/site-packages/setuptools/sandbox.py:13: DeprecationWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html
        import pkg_resources
    
    ../../../local/lib/python3.10/site-packages/pkg_resources/__init__.py:2871
    ../../../local/lib/python3.10/site-packages/pkg_resources/__init__.py:2871
    ../../../local/lib/python3.10/site-packages/pkg_resources/__init__.py:2871
    ../../../local/lib/python3.10/site-packages/pkg_resources/__init__.py:2871
    ../../../local/lib/python3.10/site-packages/pkg_resources/__init__.py:2871
      /usr/local/lib/python3.10/site-packages/pkg_resources/__init__.py:2871: DeprecationWarning: Deprecated call to `pkg_resources.declare_namespace('sphinxcontrib')`.
      Implementing implicit namespace packages (as specified in PEP 420) is preferred to `pkg_resources.declare_namespace`. See https://setuptools.pypa.io/en/latest/references/keywords.html#keyword-namespace-packages
        declare_namespace(pkg)
    
    core/tests/test_numeric.py::TestNonarrayArgs::test_dunder_round_edgecases[2147483647--1]
      /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_numeric.py:200: RuntimeWarning: invalid value encountered in cast
        assert_equal(round(val, ndigits), round(np.int32(val), ndigits))
    
    core/tests/test_scalar_methods.py::TestAsIntegerRatio::test_roundtrip[longdouble-frac_vals3-exp_vals3]
      /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_scalar_methods.py:100: RuntimeWarning: overflow encountered in conversion from python long
        df = np.longdouble(d)
    
    core/tests/test_umath.py::TestAVXUfuncs::test_avx_based_ufunc
    core/tests/test_umath.py::TestAVXUfuncs::test_avx_based_ufunc
    core/tests/test_umath.py::TestAVXUfuncs::test_avx_based_ufunc
    core/tests/test_umath.py::TestAVXUfuncs::test_avx_based_ufunc
    core/tests/test_umath.py::TestAVXUfuncs::test_avx_based_ufunc
    core/tests/test_umath.py::TestAVXUfuncs::test_avx_based_ufunc
    core/tests/test_umath.py::TestAVXUfuncs::test_avx_based_ufunc
    core/tests/test_umath.py::TestAVXUfuncs::test_avx_based_ufunc
      /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_umath.py:1935: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
        x_f64 = np.float64(x_f32)
    
    core/tests/test_umath.py::TestAVXUfuncs::test_avx_based_ufunc
    core/tests/test_umath.py::TestAVXUfuncs::test_avx_based_ufunc
    core/tests/test_umath.py::TestAVXUfuncs::test_avx_based_ufunc
      /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_umath.py:1944: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
        assert_array_max_ulp(myfunc(x_f64), np.float64(y_true128),
    
    core/tests/test_umath.py::TestAVXUfuncs::test_avx_based_ufunc
    core/tests/test_umath.py::TestAVXUfuncs::test_avx_based_ufunc
    core/tests/test_umath.py::TestAVXUfuncs::test_avx_based_ufunc
    core/tests/test_umath.py::TestAVXUfuncs::test_avx_based_ufunc
      /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_umath.py:1940: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
        assert_equal(myfunc(x_f64), np.float64(y_true128))
    
    core/tests/test_umath.py::TestComplexFunctions::test_loss_of_precision[complex64]
    core/tests/test_umath.py::TestComplexFunctions::test_loss_of_precision[complex128]
      /usr/local/lib/python3.10/site-packages/numpy/core/tests/test_umath.py:4192: RuntimeWarning: divide by zero encountered in divide
        d = np.absolute(np.arcsinh(x)/np.arcsinh(z).real - 1)
    
    distutils/tests/test_fcompiler_gnu.py: 10 warnings
    f2py/tests/test_f2py2e.py: 4 warnings
      /usr/local/lib/python3.10/site-packages/numpy/distutils/fcompiler/gnu.py:276: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead.
        if LooseVersion(v) >= "4":
    
    distutils/tests/test_fcompiler_gnu.py: 10 warnings
    f2py/tests/test_f2py2e.py: 8 warnings
      /usr/local/lib/python3.10/site-packages/setuptools/_distutils/version.py:345: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead.
        other = LooseVersion(other)
    
    f2py/tests/test_f2py2e.py::test_debugcapi_bld
      /usr/local/lib/python3.10/site-packages/setuptools/_distutils/cmd.py:66: SetuptoolsDeprecationWarning: setup.py install is deprecated.
      !!
      
              ********************************************************************************
              Please avoid running ``setup.py`` directly.
              Instead, use pypa/build, pypa/installer or other
              standards-based tools.
      
              See https://blog.ganssle.io/articles/2021/10/setup-py-deprecated.html for details.
              ********************************************************************************
      
      !!
        self.initialize_options()
    
    f2py/tests/test_f2py2e.py::test_debugcapi_bld
    f2py/tests/test_f2py2e.py::test_debugcapi_bld
    f2py/tests/test_f2py2e.py::test_npdistop
    f2py/tests/test_f2py2e.py::test_npdistop
      /usr/local/lib/python3.10/site-packages/numpy/distutils/ccompiler.py:672: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead.
        version = LooseVersion(version)
    
    f2py/tests/test_return_integer.py: 20 warnings
      /usr/local/lib/python3.10/site-packages/numpy/f2py/tests/test_return_integer.py:16: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
        assert t(array([123])) == 123
    
    f2py/tests/test_return_integer.py: 20 warnings
      /usr/local/lib/python3.10/site-packages/numpy/f2py/tests/test_return_integer.py:17: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
        assert t(array([[123]])) == 123
    
    f2py/tests/test_return_integer.py: 20 warnings
      /usr/local/lib/python3.10/site-packages/numpy/f2py/tests/test_return_integer.py:18: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
        assert t(array([123], "b")) == 123
    
    f2py/tests/test_return_integer.py: 20 warnings
      /usr/local/lib/python3.10/site-packages/numpy/f2py/tests/test_return_integer.py:19: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
        assert t(array([123], "h")) == 123
    
    f2py/tests/test_return_integer.py: 20 warnings
      /usr/local/lib/python3.10/site-packages/numpy/f2py/tests/test_return_integer.py:20: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
        assert t(array([123], "i")) == 123
    
    f2py/tests/test_return_integer.py: 20 warnings
      /usr/local/lib/python3.10/site-packages/numpy/f2py/tests/test_return_integer.py:21: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
        assert t(array([123], "l")) == 123
    
    f2py/tests/test_return_integer.py: 20 warnings
      /usr/local/lib/python3.10/site-packages/numpy/f2py/tests/test_return_integer.py:22: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
        assert t(array([123], "B")) == 123
    
    f2py/tests/test_return_integer.py: 20 warnings
      /usr/local/lib/python3.10/site-packages/numpy/f2py/tests/test_return_integer.py:23: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
        assert t(array([123], "f")) == 123
    
    f2py/tests/test_return_integer.py: 20 warnings
      /usr/local/lib/python3.10/site-packages/numpy/f2py/tests/test_return_integer.py:24: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
        assert t(array([123], "d")) == 123
    
    f2py/tests/test_return_real.py: 20 warnings
      /usr/local/lib/python3.10/site-packages/numpy/f2py/tests/test_return_real.py:23: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
        assert abs(t(array([234])) - 234.0) <= err
    
    f2py/tests/test_return_real.py: 20 warnings
      /usr/local/lib/python3.10/site-packages/numpy/f2py/tests/test_return_real.py:24: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
        assert abs(t(array([[234]])) - 234.0) <= err
    
    f2py/tests/test_return_real.py: 20 warnings
      /usr/local/lib/python3.10/site-packages/numpy/f2py/tests/test_return_real.py:25: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
        assert abs(t(array([234]).astype("b")) + 22) <= err
    
    f2py/tests/test_return_real.py: 20 warnings
      /usr/local/lib/python3.10/site-packages/numpy/f2py/tests/test_return_real.py:26: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
        assert abs(t(array([234], "h")) - 234.0) <= err
    
    f2py/tests/test_return_real.py: 20 warnings
      /usr/local/lib/python3.10/site-packages/numpy/f2py/tests/test_return_real.py:27: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
        assert abs(t(array([234], "i")) - 234.0) <= err
    
    f2py/tests/test_return_real.py: 20 warnings
      /usr/local/lib/python3.10/site-packages/numpy/f2py/tests/test_return_real.py:28: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
        assert abs(t(array([234], "l")) - 234.0) <= err
    
    f2py/tests/test_return_real.py: 20 warnings
      /usr/local/lib/python3.10/site-packages/numpy/f2py/tests/test_return_real.py:29: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
        assert abs(t(array([234], "B")) - 234.0) <= err
    
    f2py/tests/test_return_real.py: 20 warnings
      /usr/local/lib/python3.10/site-packages/numpy/f2py/tests/test_return_real.py:30: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
        assert abs(t(array([234], "f")) - 234.0) <= err
    
    f2py/tests/test_return_real.py: 20 warnings
      /usr/local/lib/python3.10/site-packages/numpy/f2py/tests/test_return_real.py:31: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)
        assert abs(t(array([234], "d")) - 234.0) <= err
    
    -- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
    =========================== short test summary info ============================
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[longdouble-to-f21]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[longdouble-to-f8]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[longdouble-to-c8]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[inf-to-b3]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[(inf+0j)-to-b2]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[nan-to-b3]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[(nan+0j)-to-b2]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[inf-to-B3]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[(inf+0j)-to-B2]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[nan-to-B3]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[(nan+0j)-to-B2]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[inf-to-h3]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[(inf+0j)-to-h2]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[nan-to-h3]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[(nan+0j)-to-h2]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[inf-to-H3]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[(inf+0j)-to-H2]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[nan-to-H3]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[(nan+0j)-to-H2]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[inf-to-i3]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[(inf+0j)-to-i2]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[nan-to-i3]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[(nan+0j)-to-i2]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[inf-to-I3]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[(inf+0j)-to-I2]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[nan-to-I3]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[(nan+0j)-to-I2]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[inf-to-l3]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[(inf+0j)-to-l2]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[nan-to-l3]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[(nan+0j)-to-l2]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[inf-to-L3]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[(inf+0j)-to-L2]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[nan-to-L3]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[(nan+0j)-to-L2]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[inf-to-q3]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[(inf+0j)-to-q2]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[nan-to-q3]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[(nan+0j)-to-q2]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[inf-to-Q3]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[(inf+0j)-to-Q2]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[nan-to-Q3]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[(nan+0j)-to-Q2]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[inf-to-p3]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[(inf+0j)-to-p2]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[nan-to-p3]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[(nan+0j)-to-p2]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[inf-to-P3]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[(inf+0j)-to-P2]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[nan-to-P3]
    FAILED core/tests/test_casting_floatingpoint_errors.py::test_floatingpoint_errors_casting[(nan+0j)-to-P2]
    FAILED core/tests/test_longdouble.py::test_repr_roundtrip - AssertionError: 
    FAILED core/tests/test_numeric.py::TestFloatExceptions::test_floating_exceptions[g]
    FAILED core/tests/test_numeric.py::TestFloatExceptions::test_floating_exceptions[G]
    FAILED core/tests/test_print.py::TestCommaDecimalPointLocale::test_locale_longdouble
    FAILED core/tests/test_scalarprint.py::TestRealScalars::test_dragon4_interface
    FAILED core/tests/test_umath.py::TestRemainder::test_float_divmod_errors[g]
    FAILED core/tests/test_umath.py::TestSpecialFloats::test_exp_exceptions - Ass...
    FAILED core/tests/test_umath.py::TestSpecialFloats::test_reciprocal_values - ...
    FAILED core/tests/test_umath.py::TestAVXUfuncs::test_avx_based_ufunc - Assert...
    FAILED core/tests/test_umath.py::TestAVXFloat32Transcendental::test_sincos_float32
    FAILED core/tests/test_umath.py::TestComplexFunctions::test_branch_cuts - Ass...
    FAILED core/tests/test_umath.py::TestComplexFunctions::test_branch_cuts_complex64
    FAILED core/tests/test_umath.py::TestComplexFunctions::test_loss_of_precision[complex64]
    FAILED core/tests/test_umath.py::TestComplexFunctions::test_loss_of_precision[complex128]
    FAILED core/tests/test_umath.py::TestComplexFunctions::test_loss_of_precision[clongdouble]
    FAILED distutils/tests/test_exec_command.py::TestExecCommand::test_basic - As...
    FAILED f2py/tests/test_return_character.py::TestFReturnCharacter::test_all_f77[t1]
    FAILED f2py/tests/test_return_character.py::TestFReturnCharacter::test_all_f77[s1]
    FAILED f2py/tests/test_return_character.py::TestFReturnCharacter::test_all_f90[t1]
    FAILED f2py/tests/test_return_character.py::TestFReturnCharacter::test_all_f90[s1]
    71 failed, 33123 passed, 964 skipped, 1308 deselected, 31 xfailed, 4 xpassed, 423 warnings in 1080.09s (0:18:00)
    cd /usr/ports/pobj/py-numpy-1.25.2-python3 && CC=cc PYTHONUSERBASE= PORTSDIR="/usr/ports" LIBTOOL="/usr/bin/libtool"  PATH='/usr/ports/pobj/py-numpy-1.25.2-python3/bin:/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin:/usr/X11R6/bin' PREFIX='/usr/local'  LOCALBASE='/usr/local' X11BASE='/usr/X11R6'  CFLAGS='-O2 -pipe -g -D CYTHON_SMALL_CODE='  TRUEPREFIX='/usr/local' DESTDIR=''  HOME='/py-numpy-1.25.2_writes_to_HOME' PICFLAG="-fpic"  BINGRP=bin BINOWN=root BINMODE=755 NONBINMODE=644  DIRMODE=755  INSTALL_COPY=-c INSTALL_STRIP=  MANGRP=bin MANOWN=root MANMODE=644 BSD_INSTALL_PROGRAM="/usr/ports/pobj/py-numpy-1.25.2-python3/bin/install -c  -m 755"  BSD_INSTALL_SCRIPT="/usr/ports/pobj/py-numpy-1.25.2-python3/bin/install -c -m 755"  BSD_INSTALL_DATA="/usr/ports/pobj/py-numpy-1.25.2-python3/bin/install -c -m 644"  BSD_INSTALL_MAN="/usr/ports/pobj/py-numpy-1.25.2-python3/bin/install -c -m 644"  BSD_INSTALL_PROGRAM_DIR="/usr/ports/pobj/py-numpy-1.25.2-python3/bin/install -d -m 755"  BSD_INSTALL_SCRIPT_DIR="/usr/ports/pobj/py-numpy-1.25.2-python3/bin/install -d -m 755"  BSD_INSTALL_DATA_DIR="/usr/ports/pobj/py-numpy-1.25.2-python3/bin/install -d -m 755"  BSD_INSTALL_MAN_DIR="/usr/ports/pobj/py-numpy-1.25.2-python3/bin/install -d -m 755" /usr/local/bin/python3.10 -c  'import numpy ; numpy.test()'
    /usr/local/lib/python3.10/site-packages/numpy/_pytesttester.py:143: DeprecationWarning: 
    
      `numpy.distutils` is deprecated since NumPy 1.23.0, as a result
      of the deprecation of `distutils` itself. It will be removed for
      Python >= 3.12. For older Python versions it will remain present.
      It is recommended to use `setuptools < 60.0` for those Python versions.
      For more details, see:
        https://numpy.org/devdocs/reference/distutils_status_migration.html 
    
    
      from numpy.distutils import cpuinfo
    NumPy version 1.25.2
    NumPy relaxed strides checking option: True
    NumPy CPU features:  NEON NEON_FP16 NEON_VFPV4 ASIMD
    ........................................................................ [  0%]
    ........................................................................ [  0%]
    ............................................................x........... [  0%]
    ........................................................................ [  0%]
    ........................................................................ [  1%]
    .................................x...................................... [  1%]
    ..............................F.F...F...F..F...F..F...F..F...F..F...F..F [  1%]
    ...F..F...F..F...F..F...F..F...F..F...F..F...F..F...F..F...F..F...F..F.. [  1%]
    .F..F...F..F...F..F...F..F...F..F...F..F...F..F...F..F...F..F........... [  1%]
    ........................................................................ [  2%]
    ........................................................................ [  2%]
    ........................................................................ [  2%]
    ........................................................................ [  2%]
    ............................................s..ssssssss................. [  2%]
    ........................................................................ [  3%]
    ........................................................................ [  3%]
    ........................................................................ [  3%]
    .......................................x..........x..x..........x....... [  3%]
    ........................................................................ [  4%]
    ........................................................................ [  4%]
    ........................................................................ [  4%]
    ........................................................................ [  4%]
    ........................................................................ [  4%]
    ...ssss................................................................. [  5%]
    ........................................................................ [  5%]
    ........................................................................ [  5%]
    ........................................................................ [  5%]
    ........................................................................ [  5%]
    ........................................................................ [  6%]
    ........................................................................ [  6%]
    ........................................................................ [  6%]
    ........................................................................ [  6%]
    ........................................................................ [  6%]
    ........................................................................ [  7%]
    ........................................................................ [  7%]
    ........................................................................ [  7%]
    ........................................................................ [  7%]
    ........................................................................ [  8%]
    ........................................................................ [  8%]
    ........................................................................ [  8%]
    ........................................................................ [  8%]
    ........................................................................ [  8%]
    ........................................................................ [  9%]
    ........................................Fsssss.s......ssss.sss.......... [  9%]
    .s...................................................................... [  9%]
    ........................................................................ [  9%]
    ...........................................xx........................... [  9%]
    ........................................................................ [ 10%]
    ........................................................................ [ 10%]
    ...............................................................s........ [ 10%]
    ........................................................................ [ 10%]
    ........................................................................ [ 10%]
    ........................................................................ [ 11%]
    ........................................................................ [ 11%]
    ........................................................................ [ 11%]
    ........................................................................ [ 11%]
    ........................................................................ [ 12%]
    ........................................................................ [ 12%]
    ........................................................................ [ 12%]
    ........................................................................ [ 12%]
    ........................................................................ [ 12%]
    ........................................................................ [ 13%]
    ........................................................................ [ 13%]
    ........................................................................ [ 13%]
    ........................................................................ [ 13%]
    ........................................................................ [ 13%]
    ........................................................................ [ 14%]
    ........................................................................ [ 14%]
    ........................................................................ [ 14%]
    ........................................................................ [ 14%]
    ........................................................................ [ 14%]
    ........................................................................ [ 15%]
    ........................................................................ [ 15%]
    ........................................................................ [ 15%]
    ........................................................................ [ 15%]
    ........................................................................ [ 16%]
    ........................................................................ [ 16%]
    ........................................................................ [ 16%]
    ........................................................................ [ 16%]
    ........................................................................ [ 16%]
    ........................................................................ [ 17%]
    ........................................................................ [ 17%]
    ........................................................................ [ 17%]
    ........................................................................ [ 17%]
    ........................................................................ [ 17%]
    ........................................................................ [ 18%]
    ........................................................................ [ 18%]
    ........................................................................ [ 18%]
    ........................................................................ [ 18%]
    ........................................................................ [ 18%]
    ........................................................................ [ 19%]
    ........................................................................ [ 19%]
    ........................................................................ [ 19%]
    ........................................................................ [ 19%]
    ........................................................................ [ 20%]
    ........................................................................ [ 20%]
    ........................................................................ [ 20%]
    ........................................................................ [ 20%]
    ........................................................................ [ 20%]
    ........................................................................ [ 21%]
    ........................................................................ [ 21%]
    ........................................................................ [ 21%]
    ........................................................................ [ 21%]
    ........................................................................ [ 21%]
    ........................................................................ [ 22%]
    ........................................................................ [ 22%]
    ........................................................................ [ 22%]
    ........................................................................ [ 22%]
    ........................................................................ [ 22%]
    ........................................................................ [ 23%]
    ........................................................................ [ 23%]
    ........................................................................ [ 23%]
    ........................................................................ [ 23%]
    ........................................................................ [ 24%]
    ........................................................................ [ 24%]
    ........................................................................ [ 24%]
    ........................................................................ [ 24%]
    ........................................................................ [ 24%]
    ........................................................................ [ 25%]
    ........................................................................ [ 25%]
    ........................................................................ [ 25%]
    ........................................................................ [ 25%]
    ........................................................................ [ 25%]
    ........................................................................ [ 26%]
    ........................................................................ [ 26%]
    ........................................................................ [ 26%]
    ........................................................................ [ 26%]
    ........................................................................ [ 26%]
    ........................................................................ [ 27%]
    ........................................................................ [ 27%]
    ........................................................................ [ 27%]
    ........................................................................ [ 27%]
    ........................................................................ [ 28%]
    ........................................................................ [ 28%]
    ........................................................................ [ 28%]
    ........................................................................ [ 28%]
    ........................................................................ [ 28%]
    ........................................................................ [ 29%]
    ........................................................................ [ 29%]
    ........................................................................ [ 29%]
    ........................................................................ [ 29%]
    ........................................................................ [ 29%]
    ........................................................................ [ 30%]
    ........................................................................ [ 30%]
    ........................................................................ [ 30%]
    ........................................................................ [ 30%]
    ........................................................................ [ 30%]
    ........................................................................ [ 31%]
    ........................................................................ [ 31%]
    ........................................................................ [ 31%]
    ........................................................................ [ 31%]
    ........................................................................ [ 32%]
    ........................................................................ [ 32%]
    ........................................................................ [ 32%]
    ........................................................................ [ 32%]
    ........................................................................ [ 32%]
    ........................................................................ [ 33%]
    ........................................................................ [ 33%]
    ........................................................................ [ 33%]
    ........................................................................ [ 33%]
    ........................................................................ [ 33%]
    ........................................................................ [ 34%]
    ........................................................................ [ 34%]
    ........................................................................ [ 34%]
    ........................................................................ [ 34%]
    ........................................................................ [ 34%]
    ........................................................................ [ 35%]
    ........................................................................ [ 35%]
    ........................................................................ [ 35%]
    ........................................................................ [ 35%]
    ........................................................................ [ 36%]
    ........................................................................ [ 36%]
    ........................................................................ [ 36%]
    ........................................................................ [ 36%]
    ........................................................................ [ 36%]
    ........................................................................ [ 37%]
    ........................................................................ [ 37%]
    ........................................................................ [ 37%]
    ........................................................................ [ 37%]
    ........................................................................ [ 37%]
    ........................................................................ [ 38%]
    ........................................................................ [ 38%]
    ........................................................................ [ 38%]
    ........................................................................ [ 38%]
    ....s.............................................x...x................. [ 38%]
    ...........F..F......................................................... [ 39%]
    ........................................................................ [ 39%]
    ....................................................X................... [ 39%]
    ........................................................................ [ 39%]
    ........................................................................ [ 40%]
    ........................................................................ [ 40%]
    ........................................................................ [ 40%]
    ........................................................................ [ 40%]
    ..F..................................................................... [ 40%]
    ........................................................................ [ 41%]
    ........................................................................ [ 41%]
    ........................................................................ [ 41%]
    .........................s.............................................. [ 41%]
    ........................................................................ [ 41%]
    ........................................................................ [ 42%]
    ........................................................................ [ 42%]
    ........................................................................ [ 42%]
    ...s.................................................................... [ 42%]
    ........................................................................ [ 42%]
    ..................................................s..................... [ 43%]
    ........................................................................ [ 43%]
    ........................................................................ [ 43%]
    .................ssssss................................................. [ 43%]
    ........................................................................ [ 44%]
    .....Fs................................................................. [ 44%]
    ........................................................................ [ 44%]
    ........................................................................ [ 44%]
    ........................................................................ [ 44%]
    ........................................................................ [ 45%]
    ........................................................................ [ 45%]
    ........................................................................ [ 45%]
    ........................................................................ [ 45%]
    ........................................................................ [ 45%]
    ........................................................................ [ 46%]
    ........................................................................ [ 46%]
    ........................................................................ [ 46%]
    ........................................................................ [ 46%]
    ..........s............................................................. [ 46%]
    ........................................................................ [ 47%]
    ........................................................................ [ 47%]
    ........................................................................ [ 47%]
    ...........s............................................................ [ 47%]
    ........................................................................ [ 48%]
    ........................................................................ [ 48%]
    ........................................................................ [ 48%]
    ........................................................................ [ 48%]
    ........................................................................ [ 48%]
    ........................................................................ [ 49%]
    .........................................................xxxxxxx........ [ 49%]
    ........................................................................ [ 49%]
    ........................................................................ [ 49%]
    ........................................................................ [ 49%]
    .................................................ssss..........Fssssssss [ 50%]
    ........................................................................ [ 50%]
    ........................................................................ [ 50%]
    ......................................................F...........FF.... [ 50%]
    .......................................F....F....F...................... [ 50%]
    ........................................................................ [ 51%]
    ........................................................................ [ 51%]
    ........................................................................ [ 51%]
    ........................................................................ [ 51%]
    ........................................................................ [ 52%]
    ........................................................................ [ 52%]
    ........................................................................ [ 52%]
    ........................................................................ [ 52%]
    ........................................................................ [ 52%]
    ........................................................................ [ 53%]
    ..............F.......................................F................. [ 53%]
    ..............................................................F......... [ 53%]
    ..............................F......................................... [ 53%]
    ......................................F................................. [ 53%]
    ......F................................................................. [ 54%]
    ..............F.......................................F................. [ 54%]
    ........................................................................ [ 54%]
    ........................................................................ [ 54%]
    ........................................................................ [ 54%]
    ........................................................................ [ 55%]
    ........................................................................ [ 55%]
    ........................................................................ [ 55%]
    ........................................................................ [ 55%]
    ........................................................................ [ 56%]
    ........................................................................ [ 56%]
    ........................................................................ [ 56%]
    ........................................................................ [ 56%]
    ........................................................................ [ 56%]
    ........................................................................ [ 57%]
    ........................................................................ [ 57%]
    ........................................................................ [ 57%]
    ........................................................................ [ 57%]
    ........................................................................ [ 57%]
    ........................................................................ [ 58%]
    ........................................................................ [ 58%]
    ........................................................................ [ 58%]
    ........................................................................ [ 58%]
    ........................................................................ [ 58%]
    ........................................................................ [ 59%]
    ........................................................................ [ 59%]
    ........................................................................ [ 59%]
    ........................................................................ [ 59%]
    ........................................................................ [ 60%]
    ........................................................................ [ 60%]
    ........................................................................ [ 60%]
    ........................................................................ [ 60%]
    .......................................................ssssssssssssF..F. [ 60%]
    ........................................................................ [ 61%]
    .........................................................FFF.FFF........ [ 61%]
    ........................................................................ [ 61%]
    ........................................................................ [ 61%]
    ......s................................................................. [ 61%]
    ........................................................................ [ 62%]
    ...........................................ssssssssssssss............... [ 62%]
    ........................................................................ [ 62%]
    .........................................s.............................. [ 62%]
    ...........ss.s..s.......s.............................................. [ 62%]
    ........................................................................ [ 63%]
    ........................................................................ [ 63%]
    ........................................................................ [ 63%]
    ........................................................................ [ 63%]
    ........................................................................ [ 64%]
    ........................................................................ [ 64%]
    ........................................................................ [ 64%]
    ........................................................................ [ 64%]
    ............................................................F........... [ 64%]
    ..s...........sssssssssssssss...............sssssssssssssss............. [ 65%]
    ........................................................................ [ 65%]
    ........................................................................ [ 65%]
    ........................................................................ [ 65%]
    ........................................................................ [ 65%]
    ........................................................................ [ 66%]
    ........................................................................ [ 66%]
    ........................................................................ [ 66%]
    ........................................................................ [ 66%]
    .....................................................................s.. [ 66%]
    ...................................................s.....sss.....x...... [ 67%]
    .......X.........x...................................................... [ 67%]
    ........................................................................ [ 67%]
    ........................................................................ [ 67%]
    ........................................................................ [ 68%]
    .....................................................................x.. [ 68%]
    ........................................................................ [ 68%]
    ........................................................................ [ 68%]
    ........................................................................ [ 68%]
    ........................................................................ [ 69%]
    ........................................................................ [ 69%]
    ........................................................................ [ 69%]
    ........................................................................ [ 69%]
    ........................................................................ [ 69%]
    ....................................s................................... [ 70%]
    ........................................................................ [ 70%]
    ..................................................................x..... [ 70%]
    ........................................................................ [ 70%]
    ........................................................................ [ 70%]
    ........................................................................ [ 71%]
    ........................................................................ [ 71%]
    ........................................................................ [ 71%]
    ........................................................................ [ 71%]
    ........................................................................ [ 72%]
    ........................................................................ [ 72%]
    ........................................................................ [ 72%]
    ........................................................................ [ 72%]
    ........................................................................ [ 72%]
    ........................................................................ [ 73%]
    ........................................................................ [ 73%]
    ........................................................................ [ 73%]
    ........................................................................ [ 73%]
    ........................................................................ [ 73%]
    ........................................................................ [ 74%]
    ...........................................................x...x........ [ 74%]
    .....s.....x............................................................ [ 74%]
    ..............ss.ss.ss.ss.ss.ss.ss...................................... [ 74%]
    ....ss.ss.ss.ss.ss.ss.ss................................................ [ 74%]
    ........................................................................ [ 75%]
    ........................................................................ [ 75%]
    ........................................................................ [ 75%]
    ........................................................................ [ 75%]
    ........................................................................ [ 76%]
    ........................................................................ [ 76%]
    ........................................................................ [ 76%]
    ........................................................................ [ 76%]
    ................................................................ss.ss.ss [ 76%]
    .ss.ss.ss.ss...........................................ss.ss.ss.ss.ss.ss [ 77%]
    .ss.......................................ss.ss.ss.ss.ss.ss.ss.......... [ 77%]
    ........................................................................ [ 77%]
    .....................................ss.ss.ss.ss.....................ss. [ 77%]
    ss.ss.ss................................................................ [ 77%]
    ........................................................................ [ 78%]
    ........................................................................ [ 78%]
    ........................................................................ [ 78%]
    ........................................................................ [ 78%]
    ........................................................................ [ 78%]
    ........................................................................ [ 79%]
    ........................................................................ [ 79%]
    ........................................................................ [ 79%]
    ....................................x................................... [ 79%]
    ........................................................................ [ 80%]
    ........................................................................ [ 80%]
    ........................................................................ [ 80%]
    ........................................................................ [ 80%]
    ........sx.............................................................. [ 80%]
    ........................................................................ [ 81%]
    ........................................................................ [ 81%]
    ........................................................................ [ 81%]
    ........................................................................ [ 81%]
    ........................................................................ [ 81%]
    ........................................................................ [ 82%]
    ........................................................................ [ 82%]
    ........................................................................ [ 82%]
    ........................................................................ [ 82%]
    ........................................................................ [ 82%]
    ........................................................................ [ 83%]
    ........................................................................ [ 83%]
    ........................................................................ [ 83%]
    ........................................................................ [ 83%]
    ........................................................................ [ 84%]
    ........................................................................ [ 84%]
    ........................................................................ [ 84%]
    ........................................................................ [ 84%]
    ........................................................................ [ 84%]
    ........................................................................ [ 85%]
    ........................................................................ [ 85%]
    ........................................................................ [ 85%]
    ........................................................................ [ 85%]
    ........................................................................ [ 85%]
    ........................................................................ [ 86%]
    ........................................................................ [ 86%]
    ........................................................................ [ 86%]
    ........................................................................ [ 86%]
    ........................................................................ [ 86%]
    ........................................................................ [ 87%]
    ........................................................................ [ 87%]
    ........................................................................ [ 87%]
    ........................................................................ [ 87%]
    ........................................................................ [ 88%]
    ........................................................................ [ 88%]
    ........................................................................ [ 88%]
    ........................................................................ [ 88%]
    ........................................................................ [ 88%]
    ........................................................................ [ 89%]
    ........................................................................ [ 89%]
    ........................................................................ [ 89%]
    ........................................................................ [ 89%]
    ........................................................................ [ 89%]
    ........................................................................ [ 90%]
    ........................................................................ [ 90%]
    ........................................................................ [ 90%]
    ........................................................................ [ 90%]
    ........................................................................ [ 90%]
    ........................................................................ [ 91%]
    ........................................................................ [ 91%]
    ...............................................s........................ [ 91%]
    ..................................................xx.................... [ 91%]
    ........................................................................ [ 92%]
    ........................................................................ [ 92%]
    ........................................................................ [ 92%]
    ........................................................................ [ 92%]
    ........................................................................ [ 92%]
    ........................................................................ [ 93%]
    ........................................................................ [ 93%]
    ........................................................................ [ 93%]
    ............................................Fatal Python error: Segmentation fault
    
    Current thread 0x0000000fc2147dd8 (most recent call first):
      File "/usr/local/lib/python3.10/site-packages/numpy/testing/_private/utils.py", line 670 in func_assert_same_pos
      File "/usr/local/lib/python3.10/site-packages/numpy/testing/_private/utils.py", line 718 in assert_array_compare
      File "/usr/local/lib/python3.10/contextlib.py", line 79 in inner
      File "/usr/local/lib/python3.10/site-packages/numpy/testing/_private/utils.py", line 1034 in assert_array_almost_equal
      File "/usr/local/lib/python3.10/contextlib.py", line 79 in inner
      File "/usr/local/lib/python3.10/site-packages/numpy/testing/_private/utils.py", line 521 in assert_almost_equal
      File "/usr/local/lib/python3.10/contextlib.py", line 79 in inner
      File "/usr/local/lib/python3.10/site-packages/numpy/testing/_private/utils.py", line 515 in assert_almost_equal
      File "/usr/local/lib/python3.10/contextlib.py", line 79 in inner
      File "/usr/local/lib/python3.10/site-packages/numpy/linalg/tests/test_linalg.py", line 41 in assert_almost_equal
      File "/usr/local/lib/python3.10/site-packages/numpy/linalg/tests/test_linalg.py", line 1747 in check_qr_stacked
      File "/usr/local/lib/python3.10/site-packages/numpy/linalg/tests/test_linalg.py", line 1784 in test_stacked_inputs
      File "/usr/local/lib/python3.10/site-packages/_pytest/python.py", line 192 in pytest_pyfunc_call
      File "/usr/local/lib/python3.10/site-packages/pluggy/_callers.py", line 77 in _multicall
      File "/usr/local/lib/python3.10/site-packages/pluggy/_manager.py", line 115 in _hookexec
      File "/usr/local/lib/python3.10/site-packages/pluggy/_hooks.py", line 493 in __call__
      File "/usr/local/lib/python3.10/site-packages/_pytest/python.py", line 1761 in runtest
      File "/usr/local/lib/python3.10/site-packages/_pytest/runner.py", line 166 in pytest_runtest_call
      File "/usr/local/lib/python3.10/site-packages/pluggy/_callers.py", line 77 in _multicall
      File "/usr/local/lib/python3.10/site-packages/pluggy/_manager.py", line 115 in _hookexec
      File "/usr/local/lib/python3.10/site-packages/pluggy/_hooks.py", line 493 in __call__
      File "/usr/local/lib/python3.10/site-packages/_pytest/runner.py", line 259 in <lambda>
      File "/usr/local/lib/python3.10/site-packages/_pytest/runner.py", line 338 in from_call
      File "/usr/local/lib/python3.10/site-packages/_pytest/runner.py", line 258 in call_runtest_hook
      File "/usr/local/lib/python3.10/site-packages/_pytest/runner.py", line 219 in call_and_report
      File "/usr/local/lib/python3.10/site-packages/_pytest/runner.py", line 130 in runtestprotocol
      File "/usr/local/lib/python3.10/site-packages/_pytest/runner.py", line 111 in pytest_runtest_protocol
      File "/usr/local/lib/python3.10/site-packages/pluggy/_callers.py", line 77 in _multicall
      File "/usr/local/lib/python3.10/site-packages/pluggy/_manager.py", line 115 in _hookexec
      File "/usr/local/lib/python3.10/site-packages/pluggy/_hooks.py", line 493 in __call__
      File "/usr/local/lib/python3.10/site-packages/_pytest/main.py", line 347 in pytest_runtestloop
      File "/usr/local/lib/python3.10/site-packages/pluggy/_callers.py", line 77 in _multicall
      File "/usr/local/lib/python3.10/site-packages/pluggy/_manager.py", line 115 in _hookexec
      File "/usr/local/lib/python3.10/site-packages/pluggy/_hooks.py", line 493 in __call__
      File "/usr/local/lib/python3.10/site-packages/_pytest/main.py", line 322 in _main
      File "/usr/local/lib/python3.10/site-packages/_pytest/main.py", line 268 in wrap_session
      File "/usr/local/lib/python3.10/site-packages/_pytest/main.py", line 315 in pytest_cmdline_main
      File "/usr/local/lib/python3.10/site-packages/pluggy/_callers.py", line 77 in _multicall
      File "/usr/local/lib/python3.10/site-packages/pluggy/_manager.py", line 115 in _hookexec
      File "/usr/local/lib/python3.10/site-packages/pluggy/_hooks.py", line 493 in __call__
      File "/usr/local/lib/python3.10/site-packages/_pytest/config/__init__.py", line 164 in main
      File "/usr/local/lib/python3.10/site-packages/numpy/_pytesttester.py", line 202 in __call__
      File "<string>", line 1 in <module>
    
    Extension modules: numpy.core._multiarray_umath, numpy.core._multiarray_tests, numpy.linalg._umath_linalg, numpy.fft._pocketfft_internal, numpy.random._common, numpy.random.bit_generator, numpy.random._bounded_integers, numpy.random._mt19937, numpy.random.mtrand, numpy.random._philox, numpy.random._pcg64, numpy.random._sfc64, numpy.random._generator, numpy.linalg.lapack_lite, numpy.core._rational_tests, numpy.core._umath_tests, numpy.core._simd, numpy.core._operand_flag_tests, checks, mem_policy, _testbuffer, numpy.core._struct_ufunc_tests, _test_abstract_interface_TestAbstractInterface_ext_module, test_array_from_pyobj_ext, _test_block_docstring_TestBlockDocString_ext_module, _test_callback_TestF77Callback_ext_module, _test_callback_TestF77CallbackPythonTLS_ext_module, _test_callback_TestF90Callback_ext_module, _test_callback_TestGH18335_ext_module, _test_character_TestCharacterString_ext_module, _test_character_TestCharacter_ext_module, _test_character_TestMiscCharacter_ext_module, _test_common_TestCommonBlock_ext_module, _test_crackfortran_TestNoSpace_ext_module, _test_crackfortran_TestExternal_ext_module, _test_crackfortran_TestCrackFortran_ext_module, _test_crackfortran_TestDimSpec_ext_module, _test_crackfortran_TestFunctionReturn_ext_module, _test_f2cmap_TestF2Cmap_ext_module, _test_kind_TestKind_ext_module, _test_mixed_TestMixed_ext_module, _test_module_doc_TestModuleDocString_ext_module, _test_quoted_character_TestQuotedCharacter_ext_module, _test_return_character_TestFReturnCharacter_ext_module, _test_return_complex_TestFReturnComplex_ext_module, _test_return_integer_TestFReturnInteger_ext_module, c_ext_return_real, _test_return_real_TestFReturnReal_ext_module, multiline, callstatement, _test_string_TestDocStringArguments_ext_module, _test_string_TestFixedString_ext_module, _test_value_attrspec_TestValueAttr_ext_module (total: 53)
    Segmentation fault (core dumped) 
    *** Error 139 in . (Makefile:81 'do-test')
    
  • Jeremie Courreges-Anglas:

    numpy 1.24.1 -> 1.25.2